English

Find D Y D X Y = Sin X Sin 2 X Sin 3 X Sin 4 X ? - Mathematics

Advertisements
Advertisements

Question

Find  \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?

 

Solution

\[\text{ We have, y } = \sin x \sin2x \sin3x \sin4x . . . \left( i \right)\]

Taking log on both sides

\[\log y = \log\left( \sin x \sin2x \sin3x \sin4x \right)\]
\[ \Rightarrow \log y = \log\sin x + \log\sin2x + \log\sin3x + \log\sin4x\]

Differentiating with respect to x using chain rule,

\[\frac{1}{y}\frac{dy}{dx} = \frac{d}{dx}\left( \log\sin x \right) + \frac{d}{dx}\left( \log\sin2x \right) + \frac{d}{dx}\left( \log\sin3x \right) + \frac{d}{dx}\left( \log\sin4x \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \frac{1}{\sin x}\frac{d}{dx}\left( \sin x \right) + \frac{1}{\sin2x}\frac{d}{dx}\left( \sin2x \right) + \frac{1}{\sin3x}\frac{d}{dx}\left( \sin3x \right) + \frac{1}{\sin4x}\frac{d}{dx}\left( \sin4x \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \frac{1}{\sin x}\left( \cos x \right) + \frac{1}{\sin2x}\left( \cos2x \right)\frac{d}{dx}\left( 2x \right) + \frac{1}{\sin3x}\left( \cos3x \right)\frac{d}{dx}\left( 3x \right) + \frac{1}{\sin4x}\left( \cos4x \right)\frac{d}{dx}\left( 4x \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \left[ \cot x + \cot2x\left( 2 \right) + \cot3x\left( 3 \right) + \cot4x\left( 4 \right) \right]\]
\[ \Rightarrow \frac{dy}{dx} = y\left[ \cot x + 2\cot2x + 3\cot3x + 4\cot4x \right]\]
\[ \Rightarrow \frac{dy}{dx} = \left( \sin x \sin2x \sin3x \sin4x \right)\left[ \cot x + 2\cot2x + 3\cot3x + 4\cot4x \right] \left[ \text{Using equation } \left( i \right) \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.05 [Page 89]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.05 | Q 24 | Page 89

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`


If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.


Differentiate \[e^{\sin} \sqrt{x}\] ?


Differentiate log7 (2x − 3) ?


Differentiate \[e^{\sin^{- 1} 2x}\] ?


Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?


If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?


If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?


Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?


If  \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?


Find  \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?

 


If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?


If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find}  \frac{dy}{dx}\] ?


If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?


Find  \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?

 


Find  \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?

 


\[\text{ If } \left( x - y \right) e^\frac{x}{x - y} = a,\text{  prove that y }\frac{dy}{dx} + x = 2y\] ?

\[\text{If y} = 1 + \frac{\alpha}{\left( \frac{1}{x} - \alpha \right)} + \frac{{\beta}/{x}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)} + \frac{{\gamma}/{x^2}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)\left( \frac{1}{x} - \gamma \right)}, \text{ find } \frac{dy}{dx}\] is:

Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?


Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?


Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.


If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\]  ?


If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ? 


Given  \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .


For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text {  at } \left( 1/4, 1/4 \right)\text {  is }\] _____________ .


If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .


If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .


Find the second order derivatives of the following function  x3 + tan x ?


If y = x + tan x, show that  \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?


If y = (sin−1 x)2, prove that (1 − x2)

\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?


If y = ex (sin + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?


\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?


If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?


If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is 

 


If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\] 

 


Differentiate `log [x+2+sqrt(x^2+4x+1)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×