English

Differentiate Sin − 1 ( X √ X 2 + a 2 ) ? - Mathematics

Advertisements
Advertisements

Question

Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?

Solution

\[\text{Let } y = \sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] 

Differentiate it with respect to we get,

\[\frac{d y}{d x} = \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right) \right\}\]

\[ = \frac{1}{\sqrt{1 - \left( \frac{x}{\sqrt{x^2 + a^2}} \right)^2}} \times \frac{d}{dx}\left( \frac{x}{\sqrt{x^2 + a^2}} \right) \left[ \text{Using chain rule and quotient rule} \right]\]

\[ = \frac{1}{\sqrt{1 - \left( \frac{x}{\sqrt{x^2 + a^2}} \right)^2}} \times \left[ \frac{\left( x^2 + a^2 \right)^\frac{1}{2} \frac{d}{dx}\left( x \right) - x\frac{d}{dx} \left( x^2 + a^2 \right)^\frac{1}{2}}{\left[ \left( x^2 + a^2 \right)^\frac{1}{2} \right]^2} \right]\]

\[ = \frac{\sqrt{x^2 + a^2}}{\sqrt{x^2 + a^2 - x^2}}\left[ \frac{\sqrt{x^2 + a^2} - \frac{x}{2\sqrt{x^2 + a^2}}\frac{d}{dx}\left( x^2 + a^2 \right)}{\left( x^2 + a^2 \right)} \right]\]

\[ = \frac{\sqrt{x^2 + a^2}}{a\left( x^2 + a^2 \right)}\left[ \sqrt{x^2 + a^2} - \frac{x}{2\sqrt{x^2 + a^2}} \times 2x \right]\]

\[ = \frac{\sqrt{x^2 + a^2}}{a\left( x^2 + a^2 \right)}\left[ \frac{x^2 + a^2 - x^2}{\sqrt{x^2 + a^2}} \right]\]

\[ = \frac{a^2}{a\left( x^2 + a^2 \right)}\]

\[ = \frac{a}{\left( x^2 + a^2 \right)}\]

\[So, \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right) \right\} = \frac{a}{\left( x^2 + a^2 \right)}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.02 [Page 37]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.02 | Q 48 | Page 37

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate \[3^{e^x}\] ?


Differentiate logx 3 ?


Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?


Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?


If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that  \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?


Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?


Differentiate  \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?


If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?


Find  \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?

 


If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?


If \[\sin^2 y + \cos xy = k,\] find  \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\] 


Differentiate  \[\left( \sin x \right)^{\log x}\] ?


If \[y = \sin \left( x^x \right)\] prove that  \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?


If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?


If \[e^x + e^y = e^{x + y}\] , prove that

\[\frac{dy}{dx} + e^{y - x} = 0\] ?


\[\text{ If } x = e^{x/y} , \text{ prove that } \frac{dy}{dx} = \frac{x - y}{x\log x}\] ?

Find  \[\frac{dy}{dx}\] , when  \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?

 


If \[x = \cos t \text{ and y }  = \sin t,\] prove that  \[\frac{dy}{dx} = \frac{1}{\sqrt{3}} \text { at } t = \frac{2 \pi}{3}\] ?

 


\[\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}, \text { find }  \frac{dy}{dx}\] ?

If \[f'\left( x \right) = \sqrt{2 x^2 - 1} \text { and y } = f \left( x^2 \right)\] then find \[\frac{dy}{dx} \text { at } x = 1\] ?


If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?


The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .


For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text {  at } \left( 1/4, 1/4 \right)\text {  is }\] _____________ .


If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .


\[\frac{d}{dx} \left[ \log \left\{ e^x \left( \frac{x - 2}{x + 2} \right)^{3/4} \right\} \right]\] equals ___________ .

If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .


If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?


If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.


If y = 3 e2x + 2 e3x, prove that  \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?


If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\]  then find the value of λ ?


If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write  \[\frac{d^2 y}{d x^2}\] in terms of y ?


If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\] 

 


If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to

 


If y = etan x, then (cos2 x)y2 =


If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is 

 


If `x=a (cos t +t sint )and y= a(sint-cos t )`  Prove that `Sec^3 t/(at),0<t< pi/2` 


Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×