Advertisements
Advertisements
Question
If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.
Solution
Given,
x = sin`(1/a log y)`
`(logy) = asin^-1 x`
y = `e^(asin^-1 x)` ...(i)
To prove: `(1 - x^2)y_2 - xy_1 - a^2 = 0`
First, determine the second-order derivative, as we have noticed one in the expression that needs to be demonstrated.
Lets find `(d^2y)/(dx^2)`
As, `(d^2y)/(dx^2) = d/dx ((dy)/(dx))`
So, lets first find dy/dx
∵ `y = e^(asin^-1 x)`
Let t = `asin^-1 x => (dt)/(dx) = a/(sqrt((1 - x^2)))[d/dx sin^-1 x = 1/(sqrt((1 - x^2)))]`
And y = et
`(dy)/(dx) = e^t a/(sqrt((1 - x^2))) = (ae^(asin^-1 x))/sqrt((1 - x^2))` ...(ii)
Again, differentiating with respect to x applying product rule:
`(d^2y)/(dx^2) = ae^(a sin^-1 x) d/dx (1/sqrt((1 - x^2))) + a/(sqrt((1 - x^2))) d/dx e^(asin^-1 x)`
Using chain rule and equation 2:
`(d^2y)/(dx^2) = -(ae^(asin-1 x))/(2(1 - x^2)sqrt((1 - x^2)))(-2x) + (a^2e^(asin^-1 x))/((1 - x^2)) ["Using" d/dx (x^n) = nx^(n-1) d/dx sin^-1 x = 1/(sqrt((1 - x^2)))]`
`(d^2y)/(dx^2) = (Xae^(asin^-1 x))/((1 - x^2)sqrt(1 -x^2)) + (a^2e^(asin^-1 x))/((1 - x^2))`
`(1 - x^2) (d^2y)/(dx^2) = a^2e^(asin^-1 x) + (Xae^(asin^-1 x))/(sqrt(1 - x^2))`
Using eq (i) and (ii):
`(1 - x^2) (d^2y)/(dx^2) - a^2y + x dy/dx`
∴ (1 − x2)y2 − xy1 − a2y = 0 ...proved
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles log cos x ?
Differentiate logx 3 ?
Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?
Differentiate \[e^{3 x} \cos 2x\] ?
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?
Differentiate \[e^x \log \sin 2x\] ?
Differentiate \[\cos \left( \log x \right)^2\] ?
If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?
If \[y = \frac{x}{x + 2}\] , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ?
Prove that \[\frac{d}{dx} \left\{ \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right\} = \sqrt{a^2 - x^2}\] ?
Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?
Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?
Find \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?
Find \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Differentiate \[x^{\sin^{- 1} x}\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?
Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?
If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?
If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?
If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?
If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .
If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .
If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .
If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?
Find \[\frac{d^2 y}{d x^2}\] where \[y = \log \left( \frac{x^2}{e^2} \right)\] ?
If y = ex (sin x + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?
\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]
If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 f '' (x) − xf(x) =
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]
Find the minimum value of (ax + by), where xy = c2.
If `x=a (cos t +t sint )and y= a(sint-cos t )` Prove that `Sec^3 t/(at),0<t< pi/2`
If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]