English

If F ( 1 ) = 4 , F ′ ( 1 ) = 2 Find the Value of the Derivative of Log ( F ( E X ) ) W.R. to X at the Point X = 0 ? - Mathematics

Advertisements
Advertisements

Question

If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of  \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?

 

Solution

\[\text { We have, } f\left( 1 \right) = 4 \text { and }f'\left( 1 \right) = 2\]
\[\text {Let y }= \log\left\{ f\left( e^x \right) \right\}\]

\[\Rightarrow \frac{dy}{dx} = \frac{d}{dx}\left[ \log\left\{ f\left( e^x \right) \right\} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{f\left( e^x \right)} \times \frac{d}{dx}\left\{ f\left( e^x \right) \right\}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{f\left( e^x \right)} \times f'\left( e^x \right) \times \frac{d}{dx}\left( e^x \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{e^x f'\left( e^x \right)}{f\left( e^x \right)}\]
\[\text { Putting x } = 0, \text { we get }, \]
\[\frac{dy}{dx} = \frac{e^0 f'\left( e^0 \right)}{f\left( e^0 \right)}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1f'\left( 1 \right)}{f\left( 1 \right)}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2}{4} \left[ \because f'\left( 1 \right) = 2 \text { and }f\left( 1 \right) = 4 \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.09 [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.09 | Q 4 | Page 117

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate the following functions from first principles eax+b.


Differentiate \[e^{\sin} \sqrt{x}\] ?


Differentiate logx 3 ?


Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?


Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?


If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that  \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?


If \[y = e^x + e^{- x}\] prove that  \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?


Prove that \[\frac{d}{dx} \left\{ \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right\} = \sqrt{a^2 - x^2}\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?


If  \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?


If \[\sin^2 y + \cos xy = k,\] find  \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\] 


If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?


Differentiate \[{10}^{ \log \sin x }\] ?


Differentiate  \[\left( x^x \right) \sqrt{x}\] ?


If \[y = \sin \left( x^x \right)\] prove that  \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?


If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?


\[\text{ If } \left( x - y \right) e^\frac{x}{x - y} = a,\text{  prove that y }\frac{dy}{dx} + x = 2y\] ?

Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?


Find  \[\frac{dy}{dx}\] , when  \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?

 


\[\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}, \text { find }  \frac{dy}{dx}\] ?

Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with  respect to \[\sec^{- 1} x\] ?


If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?


If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?


If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?


If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?


If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .


If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\]  is equal to ______________ .


If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .


Find the second order derivatives of the following function e6x cos 3x  ?


Find the second order derivatives of the following function tan−1 x ?


Find the second order derivatives of the following function  log (log x)  ?


If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?


If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?


If x = 2 cos t − cos 2ty = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?


If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write  \[\frac{d^2 y}{d x^2}\] in terms of y ?


If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?


If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\] 

 


If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`


If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×