English

If √ Y + X + √ Y − X = C , Show that D Y D X = Y X − √ Y 2 X 2 − 1 ? - Mathematics

Advertisements
Advertisements

Question

If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?

Solution

\[\text{ Here,} \] \[ \sqrt{y + x} + \sqrt{y - x} = c\]

Differentiating with respect to x,

\[\Rightarrow \frac{d}{dx}\left( \sqrt{y + x} \right) + \frac{d}{dx}\sqrt{y - x} = \frac{d}{dx}\left( c \right)\]

\[ \Rightarrow \frac{1}{2\sqrt{y + x}}\frac{d}{dx}\left( y + x \right) + \frac{1}{2\sqrt{y - x}}\frac{d}{dx}\left( y - x \right) = 0 \]

\[ \Rightarrow \frac{1}{2\sqrt{y + x}}\left( \frac{dy}{dx} + 1 \right) + \frac{1}{2\sqrt{y - x}}\left( \frac{dy}{dx} - 1 \right) = 0\]

\[ \Rightarrow \frac{dy}{dx}\left( \frac{1}{2\sqrt{y + x}} \right) + \frac{dy}{dx}\left( \frac{1}{2\sqrt{y - x}} \right) = \frac{1}{2\sqrt{y - x}} - \frac{1}{2\sqrt{y + x}}\]

\[ \Rightarrow \frac{dy}{dx} \times \frac{1}{2}\left[ \frac{1}{\sqrt{y + x}} + \frac{1}{\sqrt{y - x}} \right] = \frac{1}{2}\left[ \frac{\sqrt{y + x} - \sqrt{y - x}}{\sqrt{y - x}\sqrt{y + x}} \right]\]

\[ \Rightarrow \frac{dy}{dx}\left[ \frac{\sqrt{y - x} + \sqrt{y + x}}{\sqrt{y + x}\sqrt{y - x}} \right] = \left[ \frac{\sqrt{y + x} - \sqrt{y - x}}{\sqrt{y - x}\sqrt{y + x}} \right]\]

\[ \Rightarrow \frac{dy}{dx} = \frac{\sqrt{y + x} - \sqrt{y - x}}{\sqrt{y + x} + \sqrt{y - x}} \times \frac{\sqrt{y + x} - \sqrt{y - x}}{\sqrt{y + x} - \sqrt{y - x}} \left[ \text{ rationalizing the denominator } \right]\]

\[ \Rightarrow \frac{dy}{dx} = \frac{\left( y + x \right) + \left( y - x \right) - 2\sqrt{y + x}\sqrt{y - x}}{y + x - y + x}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{2y - 2\sqrt{y^2 - x^2}}{2x}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{2y}{2x} - \frac{2\sqrt{y^2 - x^2}}{2x}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2 - x^2}{x^2}}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.04 [Page 75]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.04 | Q 31 | Page 75

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

 

If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`

 

Differentiate sin (3x + 5) ?


Differentiate sin2 (2x + 1) ?


Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?


Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?


Differentiate  \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\]  ?


Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?


Differentiate the following with respect to x

\[\cos^{- 1} \left( \sin x \right)\]


Find  \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?

 


Differentiate \[{10}^{ \log \sin x }\] ?


Differentiate \[\left( \log x \right)^{ \log x }\] ?


Find \[\frac{dy}{dx}\] \[y =  \left( \tan  x \right)^{\cot   x}  +  \left( \cot  x \right)^{\tan  x}\] ?


If \[y = \sin \left( x^x \right)\] prove that  \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?


If  \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?

 


If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?


If  \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?


Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text {  if }0 < x < 1\] ?


If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?


If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?


If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\]  ?


Given  \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .


Find the second order derivatives of the following function sin (log x) ?


Find the second order derivatives of the following function tan−1 x ?


Find the second order derivatives of the following function x cos x ?


If y = sin (log x), prove that \[x^2 \frac{d^2 y}{d x^2} + x\frac{dy}{dx} + y = 0\] ?


If y = cosec−1 xx >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?


If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?


If y = a + bx2, a, b arbitrary constants, then

 


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to

 


If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .


Differentiate sin(log sin x) ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×