English

Differentiate Sin (3x + 5) ? - Mathematics

Advertisements
Advertisements

Question

Differentiate sin (3x + 5) ?

Solution

\[\text{ Let } y = \sin\left( 3x + 5 \right)\]
\[\text{ Differentiating y with respect to x we get }, \]
\[\frac{d y}{d x} = \frac{d}{dx}\sin\left( 3x + 5 \right)\]
\[ = \cos\left( 3x + 5 \right)\frac{d}{dx}\left( 3x + 5 \right) \left[ \text{ using chain rule } \right]\]
\[ = \cos\left( 3x + 5 \right) \times 3\]
\[ = 3\cos\left( 3x + 5 \right)\]
\[So, \frac{d}{dx}\left\{ \sin\left( 3x + 5 \right) \right\} = 3\cos\left( 3x + 5 \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.02 [Page 37]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.02 | Q 1 | Page 37

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate tan2 x ?


Differentiate etan x ?


Differentiate `2^(x^3)` ?


Differentiate \[e^{3 x} \cos 2x\] ?


Differentiate \[e^\sqrt{\cot x}\] ?


Differentiate \[\log \left( \tan^{- 1} x \right)\]? 


Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?


Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?


Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?


Differentiate  \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\]  ?


Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?


If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?


Find  \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?

 


If \[\sec \left( \frac{x + y}{x - y} \right) = a\] Prove that  \[\frac{dy}{dx} = \frac{y}{x}\] ?


If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?


If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?


Differentiate \[x^{\cos^{- 1} x}\] ?


Differentiate \[\left( \log x \right)^{ \log x }\] ?


Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?


Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?


Find  \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?


Find \[\frac{dy}{dx}\] \[y =  \left( \tan  x \right)^{\cot   x}  +  \left( \cot  x \right)^{\tan  x}\] ?


Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?


If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?


If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?


Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?


Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?


If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?

 


Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.


The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .


Given  \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .


Let  \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .


If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .


If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?


If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?


If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?


If y = a xn + 1 + bxn and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\]  then write the value of λ ?


If y = a + bx2, a, b arbitrary constants, then

 


If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×