English

Differentiate E √ Cot X ? - Mathematics

Advertisements
Advertisements

Question

Differentiate \[e^\sqrt{\cot x}\] ?

Sum

Solution

\[\text{Let y} = e^{\sqrt{\cot x} }\]

\[\Rightarrow y = e^{\left( \cot x \right)^\frac{1}{2}} \]

\[\text{Differentiate it with respect to x we get}, \]

\[\frac{d y}{d x} = \frac{d}{dx}\left( e^{\left( \cot x \right)^\frac{1}{2} }\right)\]

\[ = e^{\left( \cot x \right)^\frac{1}{2}} \times \frac{d}{dx} \left( \cot x \right)^\frac{1}{2} .....\left[ \text{ Using chain rule} \right]\]

\[ = e^\sqrt{\cot x} \times \frac{1}{2} \left( \cot x \right)^{\frac{1}{2} - 1} \frac{d}{dx}\left( \cot x \right)\]

\[ = - \frac{e^\sqrt{\cot x} \times {cosec}^2 x}{2\sqrt{\cot x}}\]

\[So, \frac{d}{dx}\left( e^\sqrt{\cot x} \right) = - \frac{e^\sqrt{\cot x} \times {cosec}^2 x}{2\sqrt{\cot x}}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.02 [Page 37]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.02 | Q 24 | Page 37

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate the following functions from first principles eax+b.


​Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .


Differentiate \[3^{x \log x}\] ?


Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?


Differentiate \[e^{\tan 3 x} \] ?


Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?


Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?


Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?


Differentiate \[\cos \left( \log x \right)^2\] ?


Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\]  ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?


Find  \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?

 


Find  \[\frac{dy}{dx}\] in the following case  \[x^{2/3} + y^{2/3} = a^{2/3}\] ?

 


If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?


If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find}  \frac{dy}{dx}\] ?


Differentiate  \[\left( \sin x \right)^{\log x}\] ?


find  \[\frac{dy}{dx}\]  \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?

 


Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?


If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?


If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?


Find the derivative of the function f (x) given by  \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?

 


Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?


If  \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at  \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?


Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?


If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?


If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?


If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?


If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?


Given  \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .


For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text {  at } \left( 1/4, 1/4 \right)\text {  is }\] _____________ .


If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?


If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?


If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?


If y = 3 e2x + 2 e3x, prove that  \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?


\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?


If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write  \[\frac{d^2 y}{d x^2}\] in terms of y ?


If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×