English

If Y = a E − K T Cos ( P T + C ) , Prove that D 2 Y D T 2 + 2 K D Y D T + N 2 Y = 0 , Where N 2 = P 2 + K 2 ? - Mathematics

Advertisements
Advertisements

Question

\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?

Solution

\[\text { We have}, \]

\[y = A e^{- kt} \cos\left( pt + c \right) . . . (1)\]

\[\text { Differentiating y with respect to t, we get }\]

\[\frac{d y}{d t} = - kA e^{- kt} \cos\left( pt + c \right) - pA e^{- kt} \sin\left( pt + c \right)\]

\[ = - ky - pA e^{- kt} \sin\left( pt + c \right) \left[ \text { From } (1) \right]\]

\[ \Rightarrow pA e^{- kt} \sin\left( pt + c \right) = - ky - \frac{d y}{d t} . . . (2)\]

\[\text { Differentiating }\frac{d y}{d t} \text { with respect to t, we get }\]

\[\frac{d^2 y}{d t^2} = - k\frac{d y}{d t} + pkA e^{- kt} \sin\left( pt + c \right) - p^2 A e^{- kt} \cos\left( pt + c \right)\]

\[ = - k\frac{d y}{d t} + k\left( - ky - \frac{d y}{d t} \right) - p^2 y \left[ \text { From }(1) \text { and } \left( 2 \right) \right]\]

\[ = - k\frac{d y}{d t} - k^2 y - k\frac{d y}{d t} - p^2 y\]

\[ = - 2k\frac{d y}{d t} - \left( k^2 + p^2 \right)y\]

\[ \Rightarrow \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + \left( k^2 + p^2 \right)y = 0\]

\[ \Rightarrow \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 . \]

\[\text { Hence, }\frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Higher Order Derivatives - Exercise 12.1 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 12 Higher Order Derivatives
Exercise 12.1 | Q 51 | Page 18

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate the following functions from first principles eax+b.


Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?


Differentiate \[\log \left( cosec x - \cot x \right)\] ?


Differentiate \[\cos \left( \log x \right)^2\] ?


If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?


Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?


Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?


Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.


Find  \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?


If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?


Differentiate \[x^{1/x}\]  with respect to x.


Differentiate \[{10}^{ \log \sin x }\] ?


Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?


Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?


Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?


If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?


If \[xy \log \left( x + y \right) = 1\] , prove that  \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?


If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?


If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?


If  \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?


If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .


If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\]  is equal to ______________ .


If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .


If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?


If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?


If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?


If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?


If y = a + bx2, a, b arbitrary constants, then

 


If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to

 


If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]

 


If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]


f(x) = xx has a stationary point at ______.


If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×