Advertisements
Advertisements
Question
\[\text { If y } = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}, \text { prove that } x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 \] Disclaimer: There is a misprint in the question. It must be
\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] instead of 1
\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] ?
Solution
\[\text { We have,} \]
\[y = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\} . . . (1)\]
\[\text { Differentiating y with respect to x, we get }\]
\[\frac{d y}{d x} = n x^{n - 1} \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\} + x^n \left\{ - a \sin\left( \log x \right) \times \frac{1}{x} + b \cos\left( \log x \right) \times \frac{1}{x} \right\}\]
\[ = \frac{n}{x} x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\} + x^{n - 1} \left\{ - a \sin\left( \log x \right) + b \cos\left( \log x \right) \right\}\]
\[ = \frac{n}{x}y + x^{n - 1} \left\{ - a \sin\left( \log x \right) + b \cos\left( \log x \right) \right\} \left[\text { From }(1) \right]\]
\[ \Rightarrow x^{n - 1} \left\{ - a \sin\left( \log x \right) + b \cos\left( \log x \right) \right\} = \frac{d y}{d x} - \frac{n}{x}y . . . (2)\]
\[\text { Differentiating } \frac{d y}{d x} \text { with respect to x, we get }\]
\[\frac{d^2 y}{d x^2} = \frac{n}{x}\frac{d y}{d x} - \frac{ny}{x^2} + \left( n - 1 \right) x^{n - 2} \left\{ - a \sin\left( \log x \right) + b \cos\left( \log x \right) \right\} + x^{n - 1} \left\{ - a \cos\left( \log x \right) \times \frac{1}{x} - b \sin\left( \log x \right) \times \frac{1}{x} \right\}\]
\[ = \frac{n}{x}\frac{d y}{d x} - \frac{ny}{x^2} + \left( n - 1 \right)\frac{x^{n - 1}}{x}\left\{ - a \sin\left( \log x \right) + b \cos\left( \log x \right) \right\} - \frac{x^n}{x^2}\left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}\]
\[ = \frac{n}{x}\frac{d y}{d x} - \frac{ny}{x^2} + \left( \frac{n - 1}{x} \right)\left( \frac{d y}{d x} - \frac{n}{x}y \right) - \frac{y}{x^2} \left[ \text { From }(1) \text { and } \left( 2 \right) \right]\]
\[ = \frac{n}{x}\frac{d y}{d x} - \frac{ny}{x^2} + \left( \frac{n - 1}{x} \right)\frac{d y}{d x} - \frac{n\left( n - 1 \right)y}{x^2} - \frac{y}{x^2}\]
\[ = \frac{d y}{d x}\left( \frac{n + n - 1}{x} \right) - \frac{\left( n + n^2 - n + 1 \right)y}{x^2}\]
\[ = \left( \frac{2n - 1}{x} \right)\frac{d y}{d x} - \frac{\left( n^2 + 1 \right)y}{x^2}\]
\[ \Rightarrow x^2 \frac{d^2 y}{d x^2} - x\left( 2n - 1 \right)\frac{d y}{d x} + \left( n^2 + 1 \right)y = 0\]
\[\text { Hence }, x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 .\]
APPEARS IN
RELATED QUESTIONS
Differentiate etan x ?
Differentiate \[3^{x^2 + 2x}\] ?
Differentiate \[e^{\tan 3 x} \] ?
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
Differentiate \[\log \left( cosec x - \cot x \right)\] ?
Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?
Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?
If \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
Differentiate
\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?
If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?
If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?
If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?
If \[x = \cos t \text{ and y } = \sin t,\] prove that \[\frac{dy}{dx} = \frac{1}{\sqrt{3}} \text { at } t = \frac{2 \pi}{3}\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?
If f (x) = loge (loge x), then write the value of `f' (e)` ?
If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?
If \[u = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ and v} = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] where \[- 1 < x < 1\], then write the value of \[\frac{du}{dv}\] ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .
If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .
Find the second order derivatives of the following function x cos x ?
Find \[\frac{d^2 y}{d x^2}\] where \[y = \log \left( \frac{x^2}{e^2} \right)\] ?
If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?
If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?
If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\]
If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =
If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`
Differentiate `log [x+2+sqrt(x^2+4x+1)]`
The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:
Year | Jan-March | April-June | July-Sept. | Oct.-Dec. |
2010 | 70 | 60 | 45 | 72 |
2011 | 79 | 56 | 46 | 84 |
2012 | 90 | 64 | 45 | 82 |
Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.
Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.