English

If Y = X N { a Cos ( Log X ) + B Sin ( Log X ) } , Prove that X 2 D 2 Y D X 2 + ( 1 − 2 N ) X D Y D X + ( 1 + N 2 ) Y = 0 Disclaimer: There is a Misprint in the Question. It Must Be - Mathematics

Advertisements
Advertisements

Question

\[\text { If y } = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}, \text { prove that } x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 \] Disclaimer: There is a misprint in the question. It must be 

\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] instead of 1

\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] ?

Solution

\[\text { We have,} \]

\[y = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\} . . . (1)\]

\[\text { Differentiating y with respect to x, we get }\]

\[\frac{d y}{d x} = n x^{n - 1} \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\} + x^n \left\{ - a \sin\left( \log x \right) \times \frac{1}{x} + b \cos\left( \log x \right) \times \frac{1}{x} \right\}\]

\[ = \frac{n}{x} x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\} + x^{n - 1} \left\{ - a \sin\left( \log x \right) + b \cos\left( \log x \right) \right\}\]

\[ = \frac{n}{x}y + x^{n - 1} \left\{ - a \sin\left( \log x \right) + b \cos\left( \log x \right) \right\} \left[\text {  From }(1) \right]\]

\[ \Rightarrow x^{n - 1} \left\{ - a \sin\left( \log x \right) + b \cos\left( \log x \right) \right\} = \frac{d y}{d x} - \frac{n}{x}y . . . (2)\]

\[\text { Differentiating } \frac{d y}{d x} \text { with respect to x, we get }\]

\[\frac{d^2 y}{d x^2} = \frac{n}{x}\frac{d y}{d x} - \frac{ny}{x^2} + \left( n - 1 \right) x^{n - 2} \left\{ - a \sin\left( \log x \right) + b \cos\left( \log x \right) \right\} + x^{n - 1} \left\{ - a \cos\left( \log x \right) \times \frac{1}{x} - b \sin\left( \log x \right) \times \frac{1}{x} \right\}\]

\[ = \frac{n}{x}\frac{d y}{d x} - \frac{ny}{x^2} + \left( n - 1 \right)\frac{x^{n - 1}}{x}\left\{ - a \sin\left( \log x \right) + b \cos\left( \log x \right) \right\} - \frac{x^n}{x^2}\left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}\]

\[ = \frac{n}{x}\frac{d y}{d x} - \frac{ny}{x^2} + \left( \frac{n - 1}{x} \right)\left( \frac{d y}{d x} - \frac{n}{x}y \right) - \frac{y}{x^2} \left[ \text { From }(1) \text { and } \left( 2 \right) \right]\]

\[ = \frac{n}{x}\frac{d y}{d x} - \frac{ny}{x^2} + \left( \frac{n - 1}{x} \right)\frac{d y}{d x} - \frac{n\left( n - 1 \right)y}{x^2} - \frac{y}{x^2}\]

\[ = \frac{d y}{d x}\left( \frac{n + n - 1}{x} \right) - \frac{\left( n + n^2 - n + 1 \right)y}{x^2}\]

\[ = \left( \frac{2n - 1}{x} \right)\frac{d y}{d x} - \frac{\left( n^2 + 1 \right)y}{x^2}\]

\[ \Rightarrow x^2 \frac{d^2 y}{d x^2} - x\left( 2n - 1 \right)\frac{d y}{d x} + \left( n^2 + 1 \right)y = 0\]

\[\text { Hence }, x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Higher Order Derivatives - Exercise 12.1 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 12 Higher Order Derivatives
Exercise 12.1 | Q 52 | Page 18

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate etan x ?


Differentiate \[3^{x^2 + 2x}\] ?


Differentiate \[e^{\tan 3 x} \] ?


Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?


Differentiate \[\log \left( cosec x - \cot x \right)\] ?


Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?


Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?


If  \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?


If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?


Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?


Differentiate 

\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that  \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?

 


If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?


If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?


If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?


If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?


If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?


Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?


If \[x = \cos t \text{ and y }  = \sin t,\] prove that  \[\frac{dy}{dx} = \frac{1}{\sqrt{3}} \text { at } t = \frac{2 \pi}{3}\] ?

 


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?


If f (x) = loge (loge x), then write the value of `f' (e)` ?


If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?


If \[u = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ and v} = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] where \[- 1 < x < 1\], then write the value of \[\frac{du}{dv}\] ?


If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .


If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .


If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .


Find the second order derivatives of the following function x cos x ?


Find \[\frac{d^2 y}{d x^2}\] where \[y = \log \left( \frac{x^2}{e^2} \right)\] ?


If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?


If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?


If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\] 

 


If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =

 


If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`


Differentiate `log [x+2+sqrt(x^2+4x+1)]`


The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:

Year Jan-March April-June July-Sept. Oct.-Dec.
2010 70 60 45 72
2011 79 56 46 84
2012 90 64 45 82

Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.


Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×