Advertisements
Advertisements
Question
Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?
Solution
\[\text{Let }y = \frac{x^2 + 2}{\sqrt{\cos x}}\]
Differentiate it with respect to x we get,
\[\frac{d y}{d x} = \frac{\sqrt{\cos x}\frac{d}{dx}\left( x^2 + 2 \right) - \left( x^2 + 2 \right)\frac{d}{dx}\left( \sqrt{\cos x} \right)}{\left( \sqrt{\cos x} \right)^2} \left[ \text{Using quotient rule and chain rule} \right]\]
\[ = \frac{2x\sqrt{\cos x} - \left( x^2 + 2 \right)\left( - \frac{1}{2}\frac{\sin x}{\sqrt{\cos x}} \right)}{\cos x}\]
\[ = \frac{2x\sqrt{\cos x} + \frac{\left( x^2 + 2 \right)\sin x}{2\sqrt{\cos x}}}{\cos x}\]
\[ = \frac{4x \cos x + \left( x^2 + 2 \right)\sin x}{2 \left( \cos x \right)^\frac{3}{2}}\]
\[ = \frac{2x}{\sqrt{\cos x}} + \frac{1}{2}\frac{\left( x^2 + 2 \right)\sin x}{\left( \cos x \right)^\frac{3}{2}}\]
\[ = \frac{1}{\sqrt{\cos x}}\left\{ 2x + \frac{1}{2}\frac{\left( x^2 + 2 \right)\sin x}{\cos x} \right\}\]
\[ = \frac{1}{\sqrt{\cos x}}\left\{ 2x + \frac{\left( x^2 + 2 \right)\tan x}{2} \right\}\]
\[So, \frac{d}{dx}\left( \frac{x^2 + 2}{\sqrt{\cos x}} \right) = \frac{1}{\sqrt{\cos x}}\left\{ 2x + \frac{\left( x^2 + 2 \right)\tan x}{2} \right\}\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles e−x.
Differentiate \[3^{x \log x}\] ?
Differentiate \[\tan^{- 1} \left( e^x \right)\] ?
Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?
If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?
If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?
Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?
If \[y = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x > 0\] ,prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2} \] ?
If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?
If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?
If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?
Differentiate \[e^{x \log x}\] ?
Find \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?
If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?
Write the derivative of sinx with respect to cos x ?
If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?
If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?
If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\] ?
If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \] to ∞, then find the value of \[\frac{dy}{dx}\] ?
If f (x) is an even function, then write whether `f' (x)` is even or odd ?
The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .
If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .
\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .
If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\] then the derivative of f (x) in the interval [0, 7] is ____________ .
If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\] is equal to ______________ .
If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .
Find the second order derivatives of the following function x3 + tan x ?
If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.
If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?
If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?
If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.