English

Show that the Height of a Cylinder, Which is Open at the Top, Having a Given Surface Area and Greatest Volume, is Equal to the Radius of Its Base. - Mathematics

Advertisements
Advertisements

Question

Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 

Sum

Solution

Let R be the radius
H be the height
V be the volume
S be the total surface area
V = πR2 H

S = πR2 + 2π RH

⇒ H = `("S" - π"R"^2)/(2π"R")`

Substituting value of H in V

`"V" = 1/2 ("SR" = π"R"^3)`

`(d"V")/(d"R") = 1/2 ("S" -3π"R"^2)`

`(d"V")/(d"R") = 0`

⇒ `1/2 ("S" -3π"R"^2) = 0`

`"R" = sqrt("S"/(3π)`

`(d^2"V")/(d"R"^2) = 1/2 (0 - 6π"R")`

= -3πR

`(d^2"V")/(d"R"^2) = -3πsqrt("S"/(3π)`

 = -`sqrt3πS < 0`

V is greatest when R = `sqrt("S"/(3π)`

H = `("S" - π xx ("S")/(3π))/(2πsqrt("S"/(3π))`

H = `((2S)/3)/(2sqrt((piS)/3))`

H = `sqrt("S"/(3π)`

Hence, proved that radius is equal to the height of the cylinder.

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 65/3/1

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If the function f(x)=2x39mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.

 


Differentiate \[3^{e^x}\] ?


Differentiate  \[e^x \log \sin 2x\] ?


Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?


\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?


If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?


Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?


If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?


Differentiate \[\left( \sin^{- 1} x \right)^x\] ?


Differentiate  \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?


find  \[\frac{dy}{dx}\]  \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?

 


If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?


\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?


Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?


\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ? 


If \[u = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ and v} = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] where \[- 1 < x < 1\], then write the value of \[\frac{du}{dv}\] ?


The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .


If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .


Find the second order derivatives of the following function e6x cos 3x  ?


Find the second order derivatives of the following function tan−1 x ?


If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?


\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text {  and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?


If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\]   is equal to

 


If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 '' (x) − xf(x) =

 


Let f(x) be a polynomial. Then, the second order derivative of f(ex) is



If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to


Differentiate the following with respect to x

\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×