Advertisements
Advertisements
Question
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.
Solution
Let R be the radius
H be the height
V be the volume
S be the total surface area
V = πR2 H
S = πR2 + 2π RH
⇒ H = `("S" - π"R"^2)/(2π"R")`
Substituting value of H in V
`"V" = 1/2 ("SR" = π"R"^3)`
`(d"V")/(d"R") = 1/2 ("S" -3π"R"^2)`
`(d"V")/(d"R") = 0`
⇒ `1/2 ("S" -3π"R"^2) = 0`
`"R" = sqrt("S"/(3π)`
`(d^2"V")/(d"R"^2) = 1/2 (0 - 6π"R")`
= -3πR
`(d^2"V")/(d"R"^2) = -3πsqrt("S"/(3π)`
= -`sqrt3πS < 0`
V is greatest when R = `sqrt("S"/(3π)`
H = `("S" - π xx ("S")/(3π))/(2πsqrt("S"/(3π))`
H = `((2S)/3)/(2sqrt((piS)/3))`
H = `sqrt("S"/(3π)`
Hence, proved that radius is equal to the height of the cylinder.
APPEARS IN
RELATED QUESTIONS
If the function f(x)=2x3−9mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.
Differentiate \[3^{e^x}\] ?
Differentiate \[e^x \log \sin 2x\] ?
Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?
\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?
If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?
Differentiate \[\left( \sin^{- 1} x \right)^x\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
find \[\frac{dy}{dx}\] \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?
If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?
\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?
\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ?
If \[u = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ and v} = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] where \[- 1 < x < 1\], then write the value of \[\frac{du}{dv}\] ?
The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .
If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .
Find the second order derivatives of the following function e6x cos 3x ?
Find the second order derivatives of the following function tan−1 x ?
If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?
\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text { and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?
If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\] is equal to
If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 f '' (x) − xf(x) =
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to
Differentiate the following with respect to x:
\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]