English

If Y = 3 Cos (Log X) + 4 Sin (Log X), Prove That X2y2 + Xy1 + Y = 0. - Mathematics

Advertisements
Advertisements

Question

If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?

Solution

Here,

\[y = 3 \cos\left( \log x \right) + 4 \sin\left( \log x \right)\]

\[\text { Differentiating w . r . t . x, we get }\]

\[ y_1 = - 3\sin\left( \log x \right) \times \frac{1}{x} + 4 \cos\left( \log x \right) \times \frac{1}{x}\]

\[ = \frac{- 3\sin\left( \log x \right) + 4\cos\left( \log x \right)}{x}\]

\[\text { Differentiating again w . r . t . x, we get }\]

\[ y_2 = \frac{\left( \frac{- 3\cos\left( \log x \right)}{x} - \frac{4\sin\left( \log x \right)}{x} \right) \times x - \left\{ - 3\sin\left( \log x \right) + 4\cos\left( \log x \right) \right\}}{x^2}\]

\[ \Rightarrow y_2 = \frac{- 3\cos\left( \log x \right) - 4\sin\left( \log x \right) - \left\{ - 3\sin\left( \log x \right) + 4\cos\left( \log x \right) \right\}}{x^2}\]

\[ \Rightarrow y_2 = \frac{- 3\cos\left( \log x \right) - 4\sin\left( \log x \right) - \left\{ - 3\sin\left( \log x \right) + 4\cos\left( \log x \right) \right\}}{x^2}\]

\[ \Rightarrow y_2 = \frac{- 3\cos\left( \log x \right) - 4\sin\left( \log x \right)}{x^2} - \frac{\left\{ - 3\sin\left( \log x \right) + 4\cos\left( \log x \right) \right\}}{x^2}\]

\[ \Rightarrow y_2 = \frac{- \left\{ 3\cos\left( \log x \right) + 4\sin\left( \log x \right) \right\}}{x^2} - \frac{\left\{ - 3\sin\left( \log x \right) + 4\cos\left( \log x \right) \right\}}{x^2}\]

\[ \Rightarrow y_2 = \frac{- y}{x^2} - \frac{y_1}{x}\]

\[ \Rightarrow x^2 y_2 = - y - x y_1 \]

\[ \Rightarrow x^2 y_2 + y + x y_1 = 0\]

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Higher Order Derivatives - Exercise 12.1 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 12 Higher Order Derivatives
Exercise 12.1 | Q 22 | Page 17

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`


Differentiate \[e^{\sin} \sqrt{x}\] ?


Differentiate \[3^{x^2 + 2x}\] ?


Differentiate (log sin x)?


Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?


Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?


Differentiate \[\log \left( \tan^{- 1} x \right)\]? 


Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?


Differentiate \[\log \left( \cos x^2 \right)\] ?


If \[y = \frac{x}{x + 2}\]  , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ? 


If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?


Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?


If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?


If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\]  with respect to x ?


If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?


If \[\sin^2 y + \cos xy = k,\] find  \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\] 


Differentiate \[x^{\cos^{- 1} x}\] ?


If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?


Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta  = \frac{\pi}{2}\] ?


If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?


If  \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that  \[\frac{dy}{dx} = \frac{x}{y}\]?

 


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?


Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ? 


\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ? 


Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?


If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .


If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .


The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to  \[\cos^{- 1} x\]  is ___________ .


If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .


Find the second order derivatives of the following function ex sin 5x  ?


If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?


If x = a(1 − cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{1}{a}\text { at } \theta = \frac{\pi}{2}\] ?


\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]

 


If y = (sin−1 x)2, then (1 − x2)y2 is equal to

 


Differentiate sin(log sin x) ?


f(x) = 3x2 + 6x + 8, x ∈ R


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×