Advertisements
Advertisements
प्रश्न
If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?
उत्तर
Here,
\[y = 3 \cos\left( \log x \right) + 4 \sin\left( \log x \right)\]
\[\text { Differentiating w . r . t . x, we get }\]
\[ y_1 = - 3\sin\left( \log x \right) \times \frac{1}{x} + 4 \cos\left( \log x \right) \times \frac{1}{x}\]
\[ = \frac{- 3\sin\left( \log x \right) + 4\cos\left( \log x \right)}{x}\]
\[\text { Differentiating again w . r . t . x, we get }\]
\[ y_2 = \frac{\left( \frac{- 3\cos\left( \log x \right)}{x} - \frac{4\sin\left( \log x \right)}{x} \right) \times x - \left\{ - 3\sin\left( \log x \right) + 4\cos\left( \log x \right) \right\}}{x^2}\]
\[ \Rightarrow y_2 = \frac{- 3\cos\left( \log x \right) - 4\sin\left( \log x \right) - \left\{ - 3\sin\left( \log x \right) + 4\cos\left( \log x \right) \right\}}{x^2}\]
\[ \Rightarrow y_2 = \frac{- 3\cos\left( \log x \right) - 4\sin\left( \log x \right) - \left\{ - 3\sin\left( \log x \right) + 4\cos\left( \log x \right) \right\}}{x^2}\]
\[ \Rightarrow y_2 = \frac{- 3\cos\left( \log x \right) - 4\sin\left( \log x \right)}{x^2} - \frac{\left\{ - 3\sin\left( \log x \right) + 4\cos\left( \log x \right) \right\}}{x^2}\]
\[ \Rightarrow y_2 = \frac{- \left\{ 3\cos\left( \log x \right) + 4\sin\left( \log x \right) \right\}}{x^2} - \frac{\left\{ - 3\sin\left( \log x \right) + 4\cos\left( \log x \right) \right\}}{x^2}\]
\[ \Rightarrow y_2 = \frac{- y}{x^2} - \frac{y_1}{x}\]
\[ \Rightarrow x^2 y_2 = - y - x y_1 \]
\[ \Rightarrow x^2 y_2 + y + x y_1 = 0\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .
Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?
Differentiate \[\tan \left( e^{\sin x }\right)\] ?
Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?
If \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?
Differentiate
\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?
If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\] ?
If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Differentiate \[{10}^\left( {10}^x \right)\] ?
Differentiate \[\left( \tan x \right)^{1/x}\] ?
Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?
If \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?
If \[y = x \sin y\] , prove that \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?
If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?
Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?
If \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that \[\frac{dy}{dx} = \frac{x}{y}\]?
If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?
\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ?
If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?
If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?
If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \] to ∞, then find the value of \[\frac{dy}{dx}\] ?
If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?
Let \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .
If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\] is equal to ______________ .
If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then } \frac{dy}{dx}\] is equal to ___________ .
If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?
\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]
Disclaimer: There is a misprint in the question,
\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of
\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?
If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?
If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\]
If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 =
If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =