Advertisements
Advertisements
प्रश्न
\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ?
उत्तर
\[\text { Let, u }= \sin^{- 1} \left( \sqrt{1 - x^2} \right)\]
\[\text {Put x } = \cos\theta\]
\[ \Rightarrow \theta = \cos^{- 1} x\]
\[\text{We get, }u = \sin^{- 1} \left( \sin\theta \right) ...... \left( i \right)\]
\[\text { Let, v } = co t^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\]
\[ \Rightarrow v = co t^{- 1} \left( \frac{\cos\theta}{\sqrt{1 - \cos^2 \theta}} \right) \]
\[ \Rightarrow v = co t^{- 1} \left( \frac{\cos\theta}{\sin\theta} \right)\]
\[ \Rightarrow v = co t^{- 1} \left( cot\theta \right) . . . \left( ii \right)\]
\[\text { Here }, \]
\[ 0 < x < 1\]
\[ \Rightarrow 0 < \cos\theta < 1\]
\[ \Rightarrow 0 < \theta < \frac{\pi}{2}\]
\[\text { So, from equation} \left( i \right), \]
\[u = \theta \left[ \text { Since,} \sin^{- 1} \left( \sin\theta \right) = \theta, \text { if }\theta \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]
\[ \Rightarrow u = \cos^{- 1} x\]
Differentiating it with respect to x,
\[\frac{du}{dx} = \frac{- 1}{\sqrt{1 - x^2}} . . . \left( iii \right)\]
\[\text { From equation } \left( ii \right), \]
\[v = \theta \left[ \text {Since}, co t^{- 1} \left( cot\theta \right) = \theta, \text { if }\theta \in \left( 0, \pi \right) \right]\]
\[ \Rightarrow v = \cos^{- 1} x\]
Differentiating it with respect to x,
\[\frac{dv}{dx} = \frac{- 1}{\sqrt{1 - x^2}} . . . \left( iv \right)\]
\[\text { Dividing equation } \left( iii \right) \text { by } \left( iv \right), \]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \left( \frac{- 1}{\sqrt{1 - x^2}} \right)\left( \frac{\sqrt{1 - x^2}}{- 1} \right)\]
\[ \therefore \frac{du}{dv} = 1\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles log cos x ?
Differentiate tan (x° + 45°) ?
Differentiate \[\frac{e^x \log x}{x^2}\] ?
If \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?
Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
If \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\], show that \[\frac{dy}{dx}\] is independent of x. ?
If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?
Find \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?
If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?
If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?
\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .
If x = 2 cos t − cos 2t, y = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?
If y = 3 e2x + 2 e3x, prove that \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?
If y = a xn + 1 + bx−n and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\] then write the value of λ ?
If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\]
If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]
If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to
If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`
Find the minimum value of (ax + by), where xy = c2.
If `x=a (cos t +t sint )and y= a(sint-cos t )` Prove that `Sec^3 t/(at),0<t< pi/2`
If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]
Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.