मराठी

Differentiate E X Log X X 2 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate \[\frac{e^x \log x}{x^2}\] ? 

उत्तर

\[\text{Let} y = \frac{e^x \log x}{x^2}\]

\[\text{Differentiate with respect to x we get}, \]

\[\frac{d y}{d x} = \frac{x^2 \frac{d}{dx}\left( e^x \log x \right) - \left( e^x \log x \right)\frac{d}{dx} x^2}{\left( x^2 \right)^2} \left[ \text{Using quotient rule} \right]\]

\[ = \frac{x^2 \left\{ e^x \frac{d}{dx}\left( \log x  \right) + \log x\frac{d}{dx}\left( e^x \right) \right\} - e^x \log x \times 2x}{x^4} \left[ \text{Using product rule} \right]\]

\[ = \frac{x^2 \left[ \frac{e^x}{x} + e^x \log x \right] - 2x e^x \log x}{x^4}\]

\[ = \frac{\frac{x^2 e^x \left( 1 + x\log x \right)}{x} - 2x e^x \log x}{x^4}\]

\[ = \frac{x e^x \left[ 1 + x\log x - 2\log x \right]}{x^4}\]

\[ = \frac{x e^x}{x^3}\left[ \frac{1}{x} + \frac{x \log x}{x} - \frac{2\log x}{x} \right]\]

\[ = e^x x^{- 2} \left[ \frac{1}{x} + \log x - \frac{2}{x}\log x \right]\]

\[So, \frac{d}{dx}\left[ \frac{e^x \log x}{x^2} \right] = e^x x^{- 2} \left[ \frac{1}{x} + \log x - \frac{2}{x}\log x \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.02 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.02 | Q 29 | पृष्ठ ३७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Differentiate the following functions from first principles e3x.


Differentiate etan x ?


Differentiate sin2 (2x + 1) ?


Differentiate \[3^{e^x}\] ?


Differentiate \[3^{x \log x}\] ?


Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?


Differentiate \[e^{3 x} \cos 2x\] ?


Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?


Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?


Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?


Differentiate \[e^{ax} \sec x \tan 2x\] ?


If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?


Differentiate  \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\]  ?


Find  \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?

 


If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?


If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?


If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?


Differentiate \[\left( 1 + \cos x \right)^x\] ?


If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?


If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?

 


Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?


If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?

 


If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .


If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .


If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .


If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?


If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?


If y = ex (sin + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?


If  \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?


\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?


\[\text { If y } = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}, \text { prove that } x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 \] Disclaimer: There is a misprint in the question. It must be 

\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] instead of 1

\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] ?


If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\] 

 


If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to

 


If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?


Differentiate sin(log sin x) ?


Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.


If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×