Advertisements
Advertisements
प्रश्न
Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?
उत्तर
\[\text{ Let, y } = \cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}\]
\[\text {Put x } = \cos\theta\]
\[ y = \cos^{- 1} \left\{ 2\cos\theta\sqrt{1 - \cos^2 \theta} \right\}\]
\[ y = \cos^{- 1} \left\{ 2\cos\theta \sin\theta \right\}\]
\[ y = \cos^{- 1} \left\{ \sin2\theta \right\} \left[ Since, \sin2\theta = 2\sin\theta\cos\theta \right]\]
\[ y = \cos^{- 1} \left[ \cos\left( \frac{\pi}{2} - 2\theta \right) \right] . . . \left( i \right)\]
\[\text{Now,} \]
\[ \frac{1}{\sqrt{2}} < x < 1\]
\[ \Rightarrow \frac{1}{\sqrt{2}} < \cos\theta < 1\]
\[ \Rightarrow 0 < \theta < \frac{\pi}{4}\]
\[ \Rightarrow 0 < 2\theta < \frac{\pi}{2}\]
\[ \Rightarrow 0 > - 2\theta > - \frac{\pi}{2}\]
\[ \Rightarrow \frac{\pi}{2} > \left( \frac{\pi}{2} - 2\theta \right) > 0\]
\[\text{ Hence, from equation } \left( i \right)\]
\[y = \frac{\pi}{2} - 2\theta \left[ Since, \cos^{- 1} \left( \cos\theta \right) = \theta, \text{ if }\theta \in \left[ 0, \pi \right] \right]\]
\[y = \frac{\pi}{2} - 2 \cos^{- 1} x \left[ Since, x = \cos\theta \right] \]
\[\text{ differentiating it with respect to x }, \]
\[\frac{d y}{d x} = \frac{d}{dx}\left( \frac{\pi}{2} \right) - 2\frac{d}{dx}\left( \cos^{- 1} x \right)\]
\[\frac{d y}{d x} = 0 - 2\left( \frac{- 1}{\sqrt{1 - x^2}} \right)\]
\[\frac{d y}{d x} = \frac{2}{\sqrt{1 - x^2}}\]
APPEARS IN
संबंधित प्रश्न
Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?
Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?
Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?
If \[y = \cos^{- 1} \left\{ \frac{2x - 3 \sqrt{1 - x^2}}{\sqrt{13}} \right\}, \text{ find } \frac{dy}{dx}\] ?
If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?
If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?
If \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find} \frac{dy}{dx}\] ?
If \[\sin^2 y + \cos xy = k,\] find \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\]
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
If \[e^x + e^y = e^{x + y}\] , prove that
\[\frac{dy}{dx} + e^{y - x} = 0\] ?
If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?
If \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?
\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?
If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?
If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?
If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?
If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?
If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?
If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \] to ∞, then find the value of \[\frac{dy}{dx}\] ?
If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .
If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\] is equal to __________ .
If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?
\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?
If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\] then find the value of λ ?
If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 f '' (x) − xf(x) =
If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?
\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]
\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]
f(x) = 3x2 + 6x + 8, x ∈ R