Advertisements
Advertisements
प्रश्न
If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?
उत्तर
We have,
\[x = 3\cos t - 2 \cos^3 t\]
\[ \Rightarrow \frac{dx}{dt} = 3\left( - \sin t \right) - 6 \cos^2 t\left( - \sin t \right)\]
\[ = - 3\sin t + 6\sin t \cos^2 t\]
Also,
\[y = 3\sin t - 2 \sin^3 t\]
\[ \Rightarrow \frac{dy}{dt} = 3\cos t - 6 \sin^2 t \cos t\]
Now,
\[\frac{dy}{dx} = \frac{\left( \frac{dy}{dt} \right)}{\left( \frac{dx}{dt} \right)}\]
\[ = \frac{3\cos t - 6 \sin^2 t \cos t}{- 3\sin t + 6\sin t \cos^2 t}\]
\[ = \frac{3\cos t\left( 1 - 2 \sin^2 t \right)}{3\sin t\left( - 1 + 2 \cos^2 t \right)}\]
\[ = \frac{\cot t\left( \cos2t \right)}{\left( \cos2t \right)}\]
\[ = \cot t\]
\[So, \frac{d^2 y}{d x^2} = \frac{d}{dx}\left( \frac{dy}{dx} \right)\]
\[ = \frac{d}{dx}\left( \cot t \right)\]
\[ = - {cosec}^2 t \frac{dt}{dx}\]
\[ = \frac{- {cosec}^2 t}{\left( \frac{dx}{dt} \right)}\]
\[ = \frac{- {cosec}^2 t}{- 3\sin t + 6\sin t \cos^2 t}\]
\[ = \frac{- {cosec}^2 t}{-3 \sin t\left( 1 - 2 \cos^2 t \right)}\]
\[ = \frac{{cosec}^3 t}{\left( - 3\cos 2t \right)}\]
\[ = \frac{- {cosec}^3 t}{3\cos 2t}\]
APPEARS IN
संबंधित प्रश्न
Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`
Differentiate log7 (2x − 3) ?
Differentiate tan 5x° ?
If \[y = \sqrt{a^2 - x^2}\] prove that \[y\frac{dy}{dx} + x = 0\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?
Differentiate
\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^{2/3} + y^{2/3} = a^{2/3}\] ?
Find \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x^2 + y^2 \right)^2 = xy\] ?
If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?
If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
Differentiate \[\left( \sin x \right)^{\log x}\] ?
Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?
Find \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?
If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?
If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?
If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\] then `f' (x)` is equal to ____________ .
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
Find the second order derivatives of the following function sin (log x) ?
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?
\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]
If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is
Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.