मराठी

Differentiate Tan − 1 ( Sin X 1 + Cos X ) , − π < X < π ? - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?

उत्तर

\[\text{ Let }f\left( x \right) = \tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right)\]

This function is defined for all real numbers where cos x ≠ 1 

\[f\left( x \right) = \tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right)\]

\[ \Rightarrow f\left( x \right) = \tan^{- 1} \left[ \frac{2 \sin\left( \frac{x}{2} \right)\cos\left( \frac{x}{2} \right)}{2 \cos^2 \left( \frac{x}{2} \right)} \right]\]

\[ \Rightarrow f\left( x \right) = \tan^{- 1} \left[ \tan\left( \frac{x}{2} \right) \right] = \frac{x}{2}\]

\[\text{ Thus}, f'\left( x \right) = \frac{d}{dx}\left( \frac{x}{2} \right) = \frac{1}{2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.03 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.03 | Q 21 | पृष्ठ ६३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`


Differentiate tan2 x ?


Differentiate logx 3 ?


Differentiate \[3^{x \log x}\] ?


Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?


Differentiate \[\tan^{- 1} \left( e^x \right)\] ?


Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?


Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\]  ?


Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?


Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?


Differentiate  \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?


If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?


Differentiate \[e^{x \log x}\] ?


Differentiate \[{10}^\left( {10}^x \right)\] ?


Differentiate \[x^{\sin^{- 1} x}\]  ?


Differentiate \[\left( \tan x \right)^{1/x}\] ?


Differentiate  \[\left( x^x \right) \sqrt{x}\] ?


find  \[\frac{dy}{dx}\]  \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?

 


Find  \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?

 


Find \[\frac{dy}{dx}\]

\[y = x^x + x^{1/x}\] ?


If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?


If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?


Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?


If f (x) = loge (loge x), then write the value of `f' (e)` ?


If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?


If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?


If  \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .


Find the second order derivatives of the following function sin (log x) ?


If y = ex cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?


If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?


If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?


If y = (sin−1 x)2, prove that (1 − x2)

\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


If \[y = e^{2x} \left( ax + b \right)\]  show that  \[y_2 - 4 y_1 + 4y = 0\] ?


If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?


If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?


If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\] 

 


If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×