मराठी

If X X + Y X = 1 , Prove that D Y D X = − { X X ( 1 + Log X ) + Y X ⋅ Log Y X ⋅ Y ( X − 1 ) } ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?

उत्तर

\[\text{ We have}, x^x + y^x = 1\]

\[ \Rightarrow e^{\log x^x} + e^{\log y^x} = 1\]

\[ \Rightarrow e^{x \log x} + e^{x \log y} = 1 \]

Differentiating with respect to x using chain rule,

\[\frac{d}{dx}\left( e^{x\log x} \right) + \frac{d}{dx}\left( e^{x \log y} \right) = \frac{d}{dx}\left( 1 \right)\]

\[ \Rightarrow e^{x \log x} \frac{d}{dx}\left( x \log x \right) + e^{x \log y} \frac{d}{dx}\left( x \log y \right) = 0\]

\[ \Rightarrow e^{x \log x} \left[ x\frac{d}{dx}\left( \log x \right) + \log x\frac{d}{dx}\left( x \right) \right] + e^{\log y^x} \left[ x\frac{d}{dx}\left( \log y \right) + \log y\frac{d}{dx}\left( x \right) \right] = 0\]

\[ \Rightarrow x^x \left[ x\left( \frac{1}{x} \right) + \log x\left( 1 \right) \right] + y^x \left[ x\left( \frac{1}{y} \right)\frac{dy}{dx} + \log y\left( 1 \right) \right] = 0\]

\[ \Rightarrow x^x \left[ 1 + \log x \right] + y^x \left( \frac{x}{y}\frac{dy}{dx} + \log y \right) = 0\]

\[ \Rightarrow y^x \times \frac{x}{y}\frac{dy}{dx} = - \left[ x^x \left( 1 + \log x \right) + y^x \log y \right]\]

\[ \Rightarrow \left( x y^{x - 1} \right)\frac{dy}{dx} = - \left[ x^x \left( 1 + \log x \right) + y^x \log y \right]\]

\[ \Rightarrow \frac{dy}{dx} = - \left[ \frac{x^x \left( 1 + \log x \right) + y^x \log y}{x y^{x - 1}} \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.05 [पृष्ठ ८९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.05 | Q 36 | पृष्ठ ८९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Differentiate the following functions from first principles ecos x.


Differentiate the following functions from first principles x2ex ?


Differentiate the following functions from first principles sin−1 (2x + 3) ?


Differentiate sin (log x) ?


Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?


Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?


Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?


 If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?


If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?

 


If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?


Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?


Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.


If  \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\]  with respect to x ?


If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find}  \frac{dy}{dx}\] ?


Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?


Find \[\frac{dy}{dx}\]  \[y = x^n + n^x + x^x + n^n\] ?

Find  \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?

 


Find  \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?


If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?


If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?


If  \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?

 


Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?


\[\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}, \text { find }  \frac{dy}{dx}\] ?

Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?


Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ? 


If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?


If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .


If  \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .


Find the second order derivatives of the following function e6x cos 3x  ?


If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?


If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?


If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?


If y = a xn + 1 + bxn and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\]  then write the value of λ ?


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


Find the minimum value of (ax + by), where xy = c2.


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×