Advertisements
Advertisements
प्रश्न
Find \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?
उत्तर
\[\text{ Let y } = x^{\sin x } + \left( \sin x \right)^x \]
\[\text{ Also, let u } = x^{\sin x } \text{ and v } = \left( \sin x \right)^x \]
\[ \therefore y = u + v\]
\[ \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} . . . \left( i \right)\]
\[\text{ Now, u } = x^{\sin x} \]
\[\text{ Taking log on both sides}, \]
\[ \Rightarrow \log u = \log\left( x^{\sin x} \right)\]
\[ \Rightarrow \log u = \sin x \log x\]
\[\text{ Differentiating both sides with respect to x}, \]
\[\frac{1}{u}\frac{du}{dx} = \log x\frac{d}{dx}\left( \sin x \right) + \sin x\frac{d}{dx}\left( \log x \right) \]
\[ \Rightarrow \frac{du}{dx} = u\left[ \cos x \log x + \sin x\frac{1}{x} \right]\]
\[ \Rightarrow \frac{du}{dx} = x^{\sin x} \left[ \cos x \log x + \frac{\sin x}{x} \right] . . . \left( ii \right)\]
\[\text{ Again, v } = \left( \sin x \right)^x \]
\[\text{ Taking log on both sides }, \]
\[ \Rightarrow \log v = \log \left( \sin x \right)^x \]
\[ \Rightarrow \log v = x \log\left( \sin x \right)\]
\[\text{ Differentiating both sides with respect to x }, \]
\[\frac{1}{v}\frac{dv}{dx} = \log\left( \sin x \right)\frac{d}{dx}\left( x \right) + x\frac{d}{dx}\left[ \log\left( \sin x \right) \right]\]
\[ \Rightarrow \frac{dv}{dx} = v\left[ \log\left( \sin x \right) + x\frac{1}{\sin x}\frac{d}{dx}\left( \sin x \right) \right]\]
\[ \Rightarrow \frac{dv}{dx} = \left( \sin x \right)^x \left[ \log \sin x + \frac{x}{\sin x}\cos x \right]\]
\[ \Rightarrow \frac{dv}{dx} = \left( \sin x \right)^x \left[ \log \sin x + x \cot x \right] . . \left( iii \right)\]
\[\text{ From }\left( i \right), \left( ii \right)\text{ and }\left( iii \right), \text{ we obtain }\]
\[\frac{dy}{dx} = x^{\sin x} \left( \cos x \log x + \frac{\sin x}{x} \right) + \left( \sin x \right)^x \left[ \log \sin x + x \cot x \right] \]
APPEARS IN
संबंधित प्रश्न
If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`
Differentiate tan2 x ?
Differentiate etan x ?
Differentiate \[e^{\tan 3 x} \] ?
Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?
Differentiate \[\cos \left( \log x \right)^2\] ?
Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?
If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?
Differentiate \[{10}^\left( {10}^x \right)\] ?
Differentiate \[\left( \tan x \right)^{1/x}\] ?
Find \[\frac{dy}{dx}\] \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?
If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?
If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?
If \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?
Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text { if }0 < x < 1\] ?
If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
If x = cos θ, y = sin3 θ, prove that \[y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 3 \sin^2 \theta\left( 5 \cos^2 \theta - 1 \right)\] ?
If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?
If \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?
If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?
If y = 3 e2x + 2 e3x, prove that \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?
\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?
\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?
If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?
If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?
If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?
If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to
Find the minimum value of (ax + by), where xy = c2.
Differentiate sin(log sin x) ?
The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:
Year | Jan-March | April-June | July-Sept. | Oct.-Dec. |
2010 | 70 | 60 | 45 | 72 |
2011 | 79 | 56 | 46 | 84 |
2012 | 90 | 64 | 45 | 82 |
Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.