मराठी

Differentiate Tan − 1 ( 2 X 1 − X 2 ) with Respect to Cos − 1 ( 1 − X 2 1 + X 2 ) , If 0 < X < 1 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text {  if }0 < x < 1\] ?

बेरीज

उत्तर

\[\text { Let, u } = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\]

\[\text { Put x } = \tan\theta\]

\[ \Rightarrow u = \tan^{- 1} \left( \frac{2\tan\theta}{1 - \tan^2 \theta} \right)\]

\[ \Rightarrow u = \tan^{- 1} \left( \tan2\theta \right) . . . \left( i \right)\]

\[\text { let, v} = \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right)\]

\[ \Rightarrow v = \cos^{- 1} \left( \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \right) \]

\[ \Rightarrow v = \cos^{- 1} \left( \cos2\theta \right) . . . \left( ii \right)\]

\[\text { Here, } 0 < x < 1\]

\[ \Rightarrow 0 < \tan\theta < 1\]

\[ \Rightarrow 0 < \theta < \frac{\pi}{4}\]

\[\text { So, from equation } \left( i \right), \]

\[u = 2\theta \left[ \text { Since }, \tan^{- 1} \left( \tan\theta \right) = \theta,\text { if } \theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right]\]

\[ \Rightarrow u = 2 \tan^{- 1} x \left[ \text { Since,} x = \tan\theta \right]\]

differentiating it with respect to x,

\[\frac{du}{dx} = \frac{2}{1 + x^2} . . . \left( iii \right)\]

\[\text { From equation } \left( ii \right), \]

\[v = \theta .........\left[ \text { Since }, \cos^{- 1} \left( \cos\theta \right) = \theta, \text{ if }\theta \in \left[ 0, \pi \right] \right]\]

\[ \Rightarrow v = 2 \tan^{- 1} x ......\left[ \text { Since, } x = \tan\theta \right]\]

Differentiating it with respect to x,

\[\frac{dv}{dx} = \frac{2}{1 + x^2} . . . \left( iv \right)\]

\[\text { Dividing equation } \left( iii \right) \text { by }\left( iv \right), \]

\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{2}{1 + x^2} \times \frac{1 + x^2}{2}\]

\[ \therefore \frac{du}{dv} = 1\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.08 [पृष्ठ ११३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.08 | Q 12 | पृष्ठ ११३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Differentiate the following functions from first principles log cos x ?


Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?


Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?


Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?


Differentiate \[\log \left( \cos x^2 \right)\] ?


If  \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\]  prove that \[\frac{dy}{dx} = \sec 2x\] ?


Differentiate 

\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?


find  \[\frac{dy}{dx}\]  \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?

 


Find  \[\frac{dy}{dx}\]  \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?

 


Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?


If  \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?

 


If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?


\[\text{ If }y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{2}}, \text{ find} \frac{dy}{dx}\] ?

 


If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?


If  \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?

 


Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?


If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?


If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?


Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?


Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?


If f (x) is an even function, then write whether `f' (x)` is even or odd ?


If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?


Let  \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .


If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\]  then `f' (x)` is equal to ____________ .


Find the second order derivatives of the following function x cos x ?


If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?


If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?


\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?


If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?


If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to

 


If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\]   is equal to

 


If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 '' (x) − xf(x) =

 


If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]

 


If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`


Find the minimum value of (ax + by), where xy = c2.


If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×