Advertisements
Advertisements
प्रश्न
Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?
उत्तर
\[\text{ Let y }= x^{\log x }+ \left( \log x \right)^x \]
\[\text{ Also, let u } = \left( \log x \right)^x \text{ and v} = x^{\log x} \]
\[ \therefore y = v + u\]
\[ \Rightarrow \frac{dy}{dx} = \frac{dv}{dx} + \frac{du}{dx} . . . \left( i \right)\]
\[\text{ Now, u} = \left( \log x \right)^x \]
\[ \Rightarrow \log u = \log\left[ \left( \log x \right)^x \right]\]
\[ \Rightarrow \log u = x\log\left( \log x \right)\]
Differentiating both sides with respect to x,
\[\frac{1}{u}\frac{du}{dx} = \log\left( \log x \right)\frac{d}{dx}\left( x \right) + x\frac{d}{dx}\left[ \log\left( \log x \right) \right]\]
\[ \Rightarrow \frac{du}{dx} = u\left[ \log\left( \log x \right) + x\frac{1}{\log x}\frac{d}{dx}\left( \log x \right) \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( \log x \right)^x \left[ \log\left( \log x \right) + \frac{x}{\log x} \times \frac{1}{x} \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( \log x \right)^x \left[ \log\left( \log x \right) + \frac{1}{\log x} \right] . . . \left( ii \right)\]
\[\text{ Also, v} = x^{\log x} \]
\[ \Rightarrow \log v = \log x^{\log x} \]
\[ \Rightarrow \log v = \log x \log x = \left( \log x \right)^2 \]
Differentiating both sides with respect to x,
\[\frac{1}{v}\frac{dv}{dx} = \frac{d}{dx}\left[ \left( \log x \right)^2 \right]\]
\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = 2\left( \log x \right)\frac{d}{dx}\left( \log x \right)\]
\[ \Rightarrow \frac{dv}{dx} = 2v\left( \log x \right)\frac{1}{x}\]
\[ \Rightarrow \frac{dv}{dx} = 2 x^{\log x} \frac{\log x}{x}\]
\[ \Rightarrow \frac{dv}{dx} = 2 x^{\log x} \frac{\log x}{x} . . . \left( iii \right)\]
\[\text{ From} \left( i \right), \left( ii \right) \text{ and }\left( iii \right), \text{ we obtain}\]
\[\frac{dy}{dx} = 2 x^{\log x} \frac{\log x}{x} + \left( \log x \right)^x \left[ \log\left( \log x \right) + \frac{1}{\log x} \right]\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles e−x.
Differentiate (log sin x)2 ?
Differentiate \[\frac{e^x \log x}{x^2}\] ?
Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?
If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?
Differentiate
\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
If \[y = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x > 0\] ,prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2} \] ?
Find \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?
Differentiate \[x^{\sin x}\] ?
find \[\frac{dy}{dx}\] \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?
If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?
If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]
If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?
If \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?
If \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?
If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \] to ∞, then find the value of \[\frac{dy}{dx}\] ?
If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .
If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?
\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?
\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]
\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?
If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write \[\frac{d^2 y}{d x^2}\] in terms of y ?
If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`