Advertisements
Advertisements
प्रश्न
If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?
उत्तर
\[\text{ Given that }y^x + x^y + x^x = a^b \]
\[\text{ Putting u }= y^x , v = x^y \text{and }w = x^x , \text{ we get }\]
\[ u + v + w = a^b \]
\[ \therefore \frac{du}{dx} + \frac{dv}{dx} + \frac{dw}{dx} = 0 . . . \left( i \right)\]
\[\text{ Now, u } = y^x \]
Taking log on both sides,
\[\log u = x \log y\]
\[\Rightarrow \frac{1}{u}\frac{du}{dx} = x\frac{d}{dx}\left( \log y \right) + \log y\frac{d}{dx}\left( x \right) \left[ \text{ using product } rule \right]\]
\[ \Rightarrow \frac{1}{u}\frac{du}{dx} = x\frac{1}{y}\frac{dy}{dx} + \log y \times 1\]
\[ \Rightarrow \frac{du}{dx} = u\left( \frac{x}{y}\frac{dy}{dx} + \log y \right)\]
\[ \Rightarrow \frac{du}{dx} = y^x \left( \frac{x}{y}\frac{dy}{dx} + \log y \right) . . . \left( ii \right)\]
\[\text{ Also, v } = x^y\]
Taking log on both sides,
\[\log v = y \log x\]
\[\Rightarrow \frac{1}{v}\frac{dv}{dx} = y\frac{d}{dx}\left( \log x \right) + \log x\frac{dy}{dx}\]
\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = y\frac{1}{x} + \log x\frac{dy}{dx}\]
\[ \Rightarrow \frac{dv}{dx} = v\left[ \frac{y}{x} + \log x\frac{dy}{dx} \right]\]
\[ \Rightarrow \frac{dv}{dx} = x^y \left[ \frac{y}{x} + \log x\frac{dy}{dx} \right] . . . \left( iii \right)\]
\[\text{ Again, w } = x^x\]
Taking log on both sides,
\[\log w = x \log x\]
\[\Rightarrow \frac{1}{w}\frac{dw}{dx} = x\frac{d}{dx}\left( \log x \right) + \log x\frac{d}{dx}\left( x \right)\]
\[ \Rightarrow \frac{1}{w}\frac{dw}{dx} = x\frac{1}{x} + \log x\left( 1 \right)\]
\[ \Rightarrow \frac{dw}{dx} = w\left( 1 + \log x \right)\]
\[ \Rightarrow \frac{dw}{dx} = x^x \left( 1 + \log x \right) . . . \left( iv \right)\]
\[\text{ From } \left( i \right), \left( ii \right), \left( iii \right)\text{ and }\left( iv \right), \text{ we have }\]
\[ y^x \left( \frac{x}{y}\frac{dy}{dx} + \log y \right) + x^y \left( \frac{y}{x} + \log x\frac{dy}{dx} \right) + x^x \left( 1 + \log x \right) = 0\]
\[ \Rightarrow \left( x . y^{x - 1} + x^y . \log x \right)\frac{dy}{dx} = - x^x \left( 1 + \log x \right) - y . x^{y - 1} - y^x \log y\]
\[ \therefore \frac{dy}{dx} = \frac{- \left\{ y^x \log y + y . x^{y - 1} + x^x \left( 1 + \log x \right) \right\}}{x . y^{x - 1} + x^y \log x}\]
APPEARS IN
संबंधित प्रश्न
If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
Differentiate (log sin x)2 ?
Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?
Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?
Differentiate \[\cos \left( \log x \right)^2\] ?
If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?
Differentiate
\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?
If \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?
If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?
If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?
If \[\sin^2 y + \cos xy = k,\] find \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\]
Differentiate \[x^{\sin x}\] ?
Differentiate \[x^{\sin^{- 1} x}\] ?
If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?
If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?
If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
If \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?
If \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?
Differentiate (log x)x with respect to log x ?
If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?
If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .
If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .
If y = e−x cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?
If y = ex (sin x + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?
If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?
\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]
Disclaimer: There is a misprint in the question,
\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of
\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is
Find the minimum value of (ax + by), where xy = c2.