Advertisements
Advertisements
प्रश्न
If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?
उत्तर
\[\text{ We have}, x^{16} y^9 = \left( x^2 + y \right)^{17} \]
Taking log on both sides,
\[\log\left( x^{16} y^9 \right) = \log \left( x^2 + y \right)^{17} \]
\[ \Rightarrow 16\log x + 9\log y = 17\log\left( x^2 + y \right)\]
Differentiating with respect to x using chain rule,
\[16\frac{d}{dx}\left( \log x \right) + 9\frac{d}{dx}\left( \log y \right) = 17\frac{d}{dx}\log\left( x^2 + y \right)\]
\[ \Rightarrow \frac{16}{x} + \frac{9}{y}\frac{dy}{dx} = \frac{17}{x^2 + y}\frac{d}{dx}\left( x^2 + y \right)\]
\[ \Rightarrow \frac{16}{x} + \frac{9}{y}\frac{dy}{dx} = \frac{17}{x^2 + y}\left[ 2x + \frac{dy}{dx} \right]\]
\[ \Rightarrow \frac{9}{y}\frac{dy}{dx} - \frac{17}{x^2 + y}\frac{dy}{dx} = \frac{34x}{x^2 + y} - \frac{16}{x}\]
\[ \Rightarrow \frac{dy}{dx}\left[ \frac{9}{y} - \frac{17}{x^2 + y} \right] = \frac{34x}{x^2 + y} - \frac{16}{x}\]
\[ \Rightarrow \frac{dy}{dx}\left[ \frac{9\left( x^2 + y \right) - 17y}{y\left( x^2 + y \right)} \right] = \left[ \frac{34 x^2 - 16\left( x^2 + y \right)}{x\left( x^2 + y \right)} \right]\]
\[ \Rightarrow \frac{dy}{dx}\left[ \frac{9 x^2 + 9y - 17y}{y\left( x^2 + y \right)} \right] = \left[ \frac{34 x^2 - 16 x^2 - 16y}{x\left( x^2 + y \right)} \right]\]
\[ \Rightarrow \frac{dy}{dx}\left[ \frac{9 x^2 - 8y}{y\left( x^2 + y \right)} \right] = \left[ \frac{18 x^2 - 16y}{x\left( x^2 + y \right)} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y}{x}\left[ \frac{2\left( 9 x^2 - 8y \right)}{9 x^2 - 8y} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2y}{x}\]
\[ \Rightarrow x\frac{dy}{dx} = 2y\]
APPEARS IN
संबंधित प्रश्न
Differentiate \[3^{e^x}\] ?
Differentiate \[e^{\tan 3 x} \] ?
Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?
Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?
Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?
Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?
If \[y = \frac{x}{x + 2}\] , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?
If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?
If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?
If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
Differentiate \[\left( \sin x \right)^{\log x}\] ?
Differentiate \[{10}^\left( {10}^x \right)\] ?
Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?
Find \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?
Find \[\frac{dy}{dx}\] \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?
If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?
If \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?
If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .
Find the second order derivatives of the following function ex sin 5x ?
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
If y = (sin−1 x)2, prove that (1 − x2)
\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?
If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?
If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?
\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?
\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]
\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?
If y = a xn + 1 + bx−n and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\] then write the value of λ ?
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =
If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`
If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]
f(x) = xx has a stationary point at ______.
f(x) = 3x2 + 6x + 8, x ∈ R