English

If X 16 Y 9 = ( X 2 + Y ) 17 ,Prove that X D Y D X = 2 Y ? - Mathematics

Advertisements
Advertisements

Question

If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?

Solution

\[\text{ We have}, x^{16} y^9 = \left( x^2 + y \right)^{17} \]

Taking log on both sides, 

\[\log\left( x^{16} y^9 \right) = \log \left( x^2 + y \right)^{17} \]

\[ \Rightarrow 16\log x + 9\log y = 17\log\left( x^2 + y \right)\]

Differentiating with respect to x using chain rule,

\[16\frac{d}{dx}\left( \log x \right) + 9\frac{d}{dx}\left( \log y \right) = 17\frac{d}{dx}\log\left( x^2 + y \right)\]

\[ \Rightarrow \frac{16}{x} + \frac{9}{y}\frac{dy}{dx} = \frac{17}{x^2 + y}\frac{d}{dx}\left( x^2 + y \right)\]

\[ \Rightarrow \frac{16}{x} + \frac{9}{y}\frac{dy}{dx} = \frac{17}{x^2 + y}\left[ 2x + \frac{dy}{dx} \right]\]

\[ \Rightarrow \frac{9}{y}\frac{dy}{dx} - \frac{17}{x^2 + y}\frac{dy}{dx} = \frac{34x}{x^2 + y} - \frac{16}{x}\]

\[ \Rightarrow \frac{dy}{dx}\left[ \frac{9}{y} - \frac{17}{x^2 + y} \right] = \frac{34x}{x^2 + y} - \frac{16}{x}\]

\[ \Rightarrow \frac{dy}{dx}\left[ \frac{9\left( x^2 + y \right) - 17y}{y\left( x^2 + y \right)} \right] = \left[ \frac{34 x^2 - 16\left( x^2 + y \right)}{x\left( x^2 + y \right)} \right]\]

\[ \Rightarrow \frac{dy}{dx}\left[ \frac{9 x^2 + 9y - 17y}{y\left( x^2 + y \right)} \right] = \left[ \frac{34 x^2 - 16 x^2 - 16y}{x\left( x^2 + y \right)} \right]\]

\[ \Rightarrow \frac{dy}{dx}\left[ \frac{9 x^2 - 8y}{y\left( x^2 + y \right)} \right] = \left[ \frac{18 x^2 - 16y}{x\left( x^2 + y \right)} \right]\]

\[ \Rightarrow \frac{dy}{dx} = \frac{y}{x}\left[ \frac{2\left( 9 x^2 - 8y \right)}{9 x^2 - 8y} \right]\]

\[ \Rightarrow \frac{dy}{dx} = \frac{2y}{x}\]

\[ \Rightarrow x\frac{dy}{dx} = 2y\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.05 [Page 89]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.05 | Q 34 | Page 89

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that `y=(4sintheta)/(2+costheta)-theta `


Differentiate the following functions from first principles ecos x.


Differentiate `2^(x^3)` ?


Differentiate \[3^{e^x}\] ?


Differentiate \[e^{\tan 3 x} \] ?


Differentiate \[\log \left( \tan^{- 1} x \right)\]? 


Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?


Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?


If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?

 


Prove that \[\frac{d}{dx} \left\{ \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right\} = \sqrt{a^2 - x^2}\] ?


Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?


If  \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\],  show that \[\frac{dy}{dx}\] is independent of x. ? 

 


If  \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find}  \frac{dy}{dx}\] ?


If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?


If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?


Differentiate \[x^{1/x}\]  with respect to x.


Differentiate \[\left( \sin^{- 1} x \right)^x\] ?


Find \[\frac{dy}{dx}\]  \[y = x^n + n^x + x^x + n^n\] ?

Find  \[\frac{dy}{dx}\]  \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?

 


Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?


If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?


If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?


If \[e^x + e^y = e^{x + y}\] , prove that

\[\frac{dy}{dx} + e^{y - x} = 0\] ?


\[\text{ If } x = e^{x/y} , \text{ prove that } \frac{dy}{dx} = \frac{x - y}{x\log x}\] ?

If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that  \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]

 


Find  \[\frac{dy}{dx}\] , when  \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?

 


Differentiate log (1 + x2) with respect to tan−1 x ?


The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .


If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?


If y = sin (log x), prove that \[x^2 \frac{d^2 y}{d x^2} + x\frac{dy}{dx} + y = 0\] ?


If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?


\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?


If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?


If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?


\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]

 


If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =

 


If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`


If `x=a (cos t +t sint )and y= a(sint-cos t )`  Prove that `Sec^3 t/(at),0<t< pi/2` 


If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×