हिंदी

Find D Y D X Y = X Log X + ( Log X ) X ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?

योग

उत्तर

\[\text{ Let y }= x^{\log x }+ \left( \log x \right)^x \]

\[\text{ Also, let u } = \left( \log x \right)^x \text{ and v} = x^{\log x} \]

\[ \therefore y = v + u\]

\[ \Rightarrow \frac{dy}{dx} = \frac{dv}{dx} + \frac{du}{dx} . . . \left( i \right)\]

\[\text{ Now, u} = \left( \log x \right)^x \]

\[ \Rightarrow \log u = \log\left[ \left( \log x \right)^x \right]\]

\[ \Rightarrow \log u = x\log\left( \log x \right)\]

Differentiating both sides with respect to x,

\[\frac{1}{u}\frac{du}{dx} = \log\left( \log x \right)\frac{d}{dx}\left( x \right) + x\frac{d}{dx}\left[ \log\left( \log x \right) \right]\]

\[ \Rightarrow \frac{du}{dx} = u\left[ \log\left( \log x \right) + x\frac{1}{\log x}\frac{d}{dx}\left( \log x \right) \right]\]

\[ \Rightarrow \frac{du}{dx} = \left( \log x \right)^x \left[ \log\left( \log x \right) + \frac{x}{\log x} \times \frac{1}{x} \right]\]

\[ \Rightarrow \frac{du}{dx} = \left( \log x \right)^x \left[ \log\left( \log x \right) + \frac{1}{\log x} \right] . . . \left( ii \right)\]

\[\text{ Also, v} = x^{\log x} \]

\[ \Rightarrow \log v = \log x^{\log x} \]

\[ \Rightarrow \log v = \log x \log x = \left( \log x \right)^2 \]

Differentiating both sides with respect to x,

\[\frac{1}{v}\frac{dv}{dx} = \frac{d}{dx}\left[ \left( \log x \right)^2 \right]\]

\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = 2\left( \log x \right)\frac{d}{dx}\left( \log x \right)\]

\[ \Rightarrow \frac{dv}{dx} = 2v\left( \log x \right)\frac{1}{x}\]

\[ \Rightarrow \frac{dv}{dx} = 2 x^{\log x} \frac{\log x}{x}\]

\[ \Rightarrow \frac{dv}{dx} = 2 x^{\log x} \frac{\log x}{x} . . . \left( iii \right)\]

\[\text{ From} \left( i \right), \left( ii \right) \text{ and }\left( iii \right), \text{ we obtain}\]

\[\frac{dy}{dx} = 2 x^{\log x} \frac{\log x}{x} + \left( \log x \right)^x \left[ \log\left( \log x \right) + \frac{1}{\log x} \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.05 [पृष्ठ ८९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.05 | Q 32 | पृष्ठ ८९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

 

If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`

 

Differentiate the following functions from first principles ecos x.


Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?


Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?


Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?


Differentiate \[\cos \left( \log x \right)^2\] ?


If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?

 


If \[y = \sqrt{x^2 + a^2}\] prove that  \[y\frac{dy}{dx} - x = 0\] ?


If \[y = e^x + e^{- x}\] prove that  \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?


Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?


If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?


Find  \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?

 


If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?


Differentiate \[{10}^\left( {10}^x \right)\] ?


Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?


If \[x = \cos t \text{ and y }  = \sin t,\] prove that  \[\frac{dy}{dx} = \frac{1}{\sqrt{3}} \text { at } t = \frac{2 \pi}{3}\] ?

 


If \[x = \sin^{- 1} \left( \frac{2 t}{1 + t^2} \right) \text{ and y } = \tan^{- 1} \left( \frac{2 t}{1 - t^2} \right), - 1 < t < 1\] porve that \[\frac{dy}{dx} = 1\] ?

 


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?


If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of  \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?

 


If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\]  ?


If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?


\[\frac{d}{dx} \left[ \log \left\{ e^x \left( \frac{x - 2}{x + 2} \right)^{3/4} \right\} \right]\] equals ___________ .

If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .


If y = (sin−1 x)2, prove that (1 − x2)

\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?


\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]

\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?


If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?


If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is 

 


If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\] 

 


If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\]   is equal to

 


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]

 


Differentiate sin(log sin x) ?


Differentiate `log [x+2+sqrt(x^2+4x+1)]`


f(x) = 3x2 + 6x + 8, x ∈ R


If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×