Advertisements
Advertisements
प्रश्न
Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?
उत्तर
\[\text{ Let y }= x^{\log x }+ \left( \log x \right)^x \]
\[\text{ Also, let u } = \left( \log x \right)^x \text{ and v} = x^{\log x} \]
\[ \therefore y = v + u\]
\[ \Rightarrow \frac{dy}{dx} = \frac{dv}{dx} + \frac{du}{dx} . . . \left( i \right)\]
\[\text{ Now, u} = \left( \log x \right)^x \]
\[ \Rightarrow \log u = \log\left[ \left( \log x \right)^x \right]\]
\[ \Rightarrow \log u = x\log\left( \log x \right)\]
Differentiating both sides with respect to x,
\[\frac{1}{u}\frac{du}{dx} = \log\left( \log x \right)\frac{d}{dx}\left( x \right) + x\frac{d}{dx}\left[ \log\left( \log x \right) \right]\]
\[ \Rightarrow \frac{du}{dx} = u\left[ \log\left( \log x \right) + x\frac{1}{\log x}\frac{d}{dx}\left( \log x \right) \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( \log x \right)^x \left[ \log\left( \log x \right) + \frac{x}{\log x} \times \frac{1}{x} \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( \log x \right)^x \left[ \log\left( \log x \right) + \frac{1}{\log x} \right] . . . \left( ii \right)\]
\[\text{ Also, v} = x^{\log x} \]
\[ \Rightarrow \log v = \log x^{\log x} \]
\[ \Rightarrow \log v = \log x \log x = \left( \log x \right)^2 \]
Differentiating both sides with respect to x,
\[\frac{1}{v}\frac{dv}{dx} = \frac{d}{dx}\left[ \left( \log x \right)^2 \right]\]
\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = 2\left( \log x \right)\frac{d}{dx}\left( \log x \right)\]
\[ \Rightarrow \frac{dv}{dx} = 2v\left( \log x \right)\frac{1}{x}\]
\[ \Rightarrow \frac{dv}{dx} = 2 x^{\log x} \frac{\log x}{x}\]
\[ \Rightarrow \frac{dv}{dx} = 2 x^{\log x} \frac{\log x}{x} . . . \left( iii \right)\]
\[\text{ From} \left( i \right), \left( ii \right) \text{ and }\left( iii \right), \text{ we obtain}\]
\[\frac{dy}{dx} = 2 x^{\log x} \frac{\log x}{x} + \left( \log x \right)^x \left[ \log\left( \log x \right) + \frac{1}{\log x} \right]\]
APPEARS IN
संबंधित प्रश्न
If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`
Differentiate the following functions from first principles ecos x.
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?
Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?
Differentiate \[\cos \left( \log x \right)^2\] ?
If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
If \[y = e^x + e^{- x}\] prove that \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?
If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?
Find \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
Differentiate \[{10}^\left( {10}^x \right)\] ?
Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?
If \[x = \cos t \text{ and y } = \sin t,\] prove that \[\frac{dy}{dx} = \frac{1}{\sqrt{3}} \text { at } t = \frac{2 \pi}{3}\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?
If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?
If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .
If y = (sin−1 x)2, prove that (1 − x2)
\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?
\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]
\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?
If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\]
If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\] is equal to
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]
Differentiate sin(log sin x) ?
Differentiate `log [x+2+sqrt(x^2+4x+1)]`
f(x) = 3x2 + 6x + 8, x ∈ R
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?