Advertisements
Advertisements
प्रश्न
If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]
विकल्प
f(t) − f''(t)
{f(t) − f'' (t)}2
{f(t) + f''(t)}2
none of these
उत्तर
(c){f(t) + f''(t)}2
Here,
\[x = f\left( t \right)\cos t - f^{'} \left( t \right) \sin t \text { and y } = f\left( t \right) \sin t + f^{'} \left( t \right)\cos t\]
\[ \Rightarrow \frac{d x}{d t} = f^{'} \left( t \right)\cos t - f\left( t \right)\sin t - f^{''} \left( t \right)\sin t - f^{'} \left( t \right)\cos t \text { and } \frac{d y}{d t} = f^{'} \left( t \right) \sin t + f\left( t \right)\cos t + f^{''} \left( t \right)\cos t - f^{'} \left( t \right) \sin t\]
\[ \Rightarrow \frac{d x}{d t} = - f\left( t \right)\sin t - f^{''} \left( t \right)\sin t \text { and } \frac{d y}{d t} = f\left( t \right)\cos t + f^{''} \left( t \right)\cos t\]
\[\text { Thus }, \]
\[ \left( \frac{d x}{d t} \right)^2 + \left( \frac{d y}{d t} \right)^2 = \left\{ - f\left( t \right)\sin t - f^{''} \left( t \right)\sin t \right\}^2 + \left\{ f\left( t \right)\cos t + f^{''} \left( t \right)\cos t \right\}^2 \]
\[ = \left\{ f\left( t \right)\sin t + f^{''} \left( t \right)\sin t \right\}^2 + \left\{ f\left( t \right)\cos t + f^{''} \left( t \right)\cos t \right\}^2 \]
\[ = \sin^2 t \left\{ f\left( t \right) + f^{''} \left( t \right) \right\}^2 + \cos^2 t \left\{ f\left( t \right) + f^{''} \left( t \right) \right\}^2 \]
\[ = \left\{ f\left( t \right) + f^{''} \left( t \right) \right\}^2 \left( \sin^2 t + \cos^2 t \right)\]
\[ = \left\{ f\left( t \right) + f^{''} \left( t \right) \right\}^2\]
APPEARS IN
संबंधित प्रश्न
Differentiate tan (x° + 45°) ?
Differentiate \[e^{\sin} \sqrt{x}\] ?
Differentiate \[3^{e^x}\] ?
Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?
Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?
If \[y = \frac{x}{x + 2}\] , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ?
If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] , prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?
Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Find \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?
If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?
If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?
If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?
If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?
Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta = \frac{\pi}{2}\] ?
If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?
Write the derivative of sinx with respect to cos x ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?
Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?
\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ?
If f (x) = loge (loge x), then write the value of `f' (e)` ?
If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?
If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \] to ∞, then find the value of \[\frac{dy}{dx}\] ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .
If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .
Find the second order derivatives of the following function x cos x ?
If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?
If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If y = a xn + 1 + bx−n and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\] then write the value of λ ?
If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\]
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.