हिंदी

If X = F(T) Cos T − F' (T) Sin T and Y = F(T) Sin T + F'(T) Cos T, Then ( D X D T ) 2 + ( D Y D T ) 2 = (A) F(T) − F''(T) - Mathematics

Advertisements
Advertisements

प्रश्न

If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]

 

विकल्प

  •  f(t) − f''(t)

  • {f(t) − f'' (t)}2

  • {f(t) + f''(t)}2

  • none of these

MCQ

उत्तर

(c){f(t) + f''(t)}2

Here,

\[x = f\left( t \right)\cos t - f^{'} \left( t \right) \sin t \text { and y } = f\left( t \right) \sin t + f^{'} \left( t \right)\cos t\]

\[ \Rightarrow \frac{d x}{d t} = f^{'} \left( t \right)\cos t - f\left( t \right)\sin t - f^{''} \left( t \right)\sin t - f^{'} \left( t \right)\cos t \text { and } \frac{d y}{d t} = f^{'} \left( t \right) \sin t + f\left( t \right)\cos t + f^{''} \left( t \right)\cos t - f^{'} \left( t \right) \sin t\]

\[ \Rightarrow \frac{d x}{d t} = - f\left( t \right)\sin t - f^{''} \left( t \right)\sin t \text { and } \frac{d y}{d t} = f\left( t \right)\cos t + f^{''} \left( t \right)\cos t\]

\[\text { Thus }, \]

\[ \left( \frac{d x}{d t} \right)^2 + \left( \frac{d y}{d t} \right)^2 = \left\{ - f\left( t \right)\sin t - f^{''} \left( t \right)\sin t \right\}^2 + \left\{ f\left( t \right)\cos t + f^{''} \left( t \right)\cos t \right\}^2 \]

\[ = \left\{ f\left( t \right)\sin t + f^{''} \left( t \right)\sin t \right\}^2 + \left\{ f\left( t \right)\cos t + f^{''} \left( t \right)\cos t \right\}^2 \]

\[ = \sin^2 t \left\{ f\left( t \right) + f^{''} \left( t \right) \right\}^2 + \cos^2 t \left\{ f\left( t \right) + f^{''} \left( t \right) \right\}^2 \]

\[ = \left\{ f\left( t \right) + f^{''} \left( t \right) \right\}^2 \left( \sin^2 t + \cos^2 t \right)\]

\[ = \left\{ f\left( t \right) + f^{''} \left( t \right) \right\}^2\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Higher Order Derivatives - Exercise 12.3 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 12 Higher Order Derivatives
Exercise 12.3 | Q 21 | पृष्ठ २४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate tan (x° + 45°) ?


Differentiate \[e^{\sin} \sqrt{x}\] ?


Differentiate \[3^{e^x}\] ?


Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?


Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?


Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?


Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?


If \[y = \frac{x}{x + 2}\]  , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ? 


If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] ,  prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?


Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?


Find  \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?

 


If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?


If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?


If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?


Find  \[\frac{dy}{dx}\]  \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?

 


If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?


Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta  = \frac{\pi}{2}\] ?


If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?


\[\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}, \text { find }  \frac{dy}{dx}\] ?

Write the derivative of sinx with respect to cos x ?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?


Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?


\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ? 


If f (x) = loge (loge x), then write the value of `f' (e)` ?


If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?


If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?


If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?


If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \]  to ∞, then find the value of  \[\frac{dy}{dx}\] ?


If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .


If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .


Find the second order derivatives of the following function x cos x ?


If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?


If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If y = a xn + 1 + bxn and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\]  then write the value of λ ?


If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\] 

 


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×