Advertisements
Advertisements
प्रश्न
Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta = \frac{\pi}{2}\] ?
उत्तर
\[\text{ We have, }x = a\left( 1 - \cos\theta \right) \text{ and }y = a\left( \theta + \sin\theta \right)\]
\[ \therefore \frac{dx}{d\theta} = \frac{d}{d\theta}\left[ a\left( 1 - \cos\theta \right) \right] = a\left( \sin\theta \right)\]
\[\text{ and } \]
\[\frac{dy}{d\theta} = \frac{d}{d\theta}\left[ a\left( \theta + \sin\theta \right) \right] = a\left( 1 + \cos\theta \right)\]
\[ \therefore \left[ \frac{dy}{dx} \right]_{\theta = \frac{\pi}{2}} = \left[ \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} \right]_{\theta = \frac{\pi}{2}} = \left[ \frac{a\left( 1 + \cos\theta \right)}{a\left( \sin \theta \right)} \right]_{\theta = \frac{\pi}{2}} = \frac{a\left( 1 + 0 \right)}{a} = 1\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles e−x.
Differentiate the following functions from first principles ecos x.
Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .
Differentiate log7 (2x − 3) ?
Differentiate logx 3 ?
Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?
Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?
Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?
If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] , prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?
If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\] ?
Differentiate \[\left( \log x \right)^x\] ?
Differentiate \[\left( \log x \right)^{ \log x }\] ?
Differentiate \[{10}^\left( {10}^x \right)\] ?
Differentiate \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\] ?
Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?
If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?
If \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?
If \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that \[\frac{dy}{dx} = \frac{x}{y}\]?
Differentiate (log x)x with respect to log x ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?
If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?
If f (x) is an even function, then write whether `f' (x)` is even or odd ?
If f (x) is an odd function, then write whether `f' (x)` is even or odd ?
If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .
If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .
Find the second order derivatives of the following function tan−1 x ?
If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?
If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?
\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\] then find the value of λ ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\] is equal to
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to
If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]