Advertisements
Advertisements
प्रश्न
Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?
उत्तर
\[\text{ Let y} = \left( x \cos x \right)^x + \left( x \sin x \right)^\frac{1}{x} \]
\[ \text{ Also, Let u } = \left( x \cos x \right)^x \text{ and v } = \left( x \sin x \right)^\frac{1}{x} \]
\[ \therefore y = u + v\]
\[ \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} . . . \left( i \right)\]
\[\text{ Now, u }= \left( x \cos x \right)^x \]
\[ \Rightarrow \log u = \log \left( x \cos x \right)^x \]
\[ \Rightarrow \log u = x \log\left( x \cos x \right)\]
\[ \Rightarrow \log u = x\left[ \log x + \log \cos x \right]\]
\[ \Rightarrow \log u = x\log x + x\log \cos x\]
Differentiate both sides with respect to x,
\[\frac{1}{u}\frac{du}{dx} = \frac{d}{dx}\left( x \log x \right) + \frac{d}{dx}\left( x \log \cos x \right)\]
\[ \Rightarrow \frac{du}{dx} = u\left[ \left\{ \log x\frac{d}{dx}\left( x \right) + x\frac{d}{dx}\left( \log x \right) \right\} + \left\{ \log \cos x\frac{d}{dx}\left( x \right) + x\frac{d}{dx}\left( \log \cos x \right) \right\} \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( x \cos x \right)^x \left[ \left( \log x\left( 1 \right) + x\left( \frac{1}{x} \right) \right) + \left\{ \log \cos x\left( 1 \right) + x\frac{1}{\cos x}\frac{d}{dx}\left( \cos x \right) \right\} \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( x \cos x \right)^x \left[ \left( \log x + 1 \right) + \left\{ \log \cos x + \frac{x}{\cos x}\left( - \sin x \right) \right\} \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( x \cos x \right)^x \left[ \left( 1 + \log x \right) + \left( \log \cos x - x \tan x \right) \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( x \cos x \right)^x \left[ 1 - x \tan x + \left( \log x + \log \cos x \right) \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( x \cos x \right)^x \left[ 1 - x \tan x + \log\left( x \cos x \right) \right] . . . \left( ii \right)\]
\[\text{ Again, v} = \left( x \sin x \right)^\frac{1}{x} \]
\[ \Rightarrow \log v = \log \left( x \sin x \right)^\frac{1}{x} \]
\[ \Rightarrow \log v = \frac{1}{x}\log\left( x \sin x \right)\]
\[ \Rightarrow \log v = \frac{1}{x}\left( \log x + \log \sin x \right)\]
\[ \Rightarrow \log v = \frac{1}{x}\log x + \frac{1}{x}\log \sin x\]
Differentiating both sides with respect to x,
\[\frac{1}{v}\frac{dv}{dx} = \frac{d}{dx}\left( \frac{1}{x}\log x \right) + \frac{d}{dx}\left[ \frac{1}{x}\log\left( \sin x \right) \right]\]
\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = \left[ \log x\frac{d}{dx}\left( \frac{1}{x} \right) + \frac{1}{x}\frac{d}{dx}\left( \log x \right) \right] + \left[ \log\left( \sin x \right)\frac{d}{dx}\left( \frac{1}{x} \right) + \frac{1}{x}\frac{d}{dx}\left\{ \log\left( \sin x \right) \right\} \right]\]
\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = \left[ \log x\left( - \frac{1}{x^2} \right) + \left( \frac{1}{x} \right)\left( \frac{1}{x} \right) \right] + \left[ \log\left( \sin x \right)\left( - \frac{1}{x^2} \right) + \frac{1}{x}\left( \frac{1}{\sin x} \right)\frac{d}{dx}\left( \sin x \right) \right]\]
\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = \frac{1}{x^2}\left( 1 - \log x \right) + \left[ - \frac{\log\left( \sin x \right)}{x^2} + \frac{1}{x \sin x}\left( \cos x \right) \right]\]
\[ \Rightarrow \frac{dv}{dx} = \left( x \sin x \right)^\frac{1}{x} \left[ \frac{1 - \log x}{x^2} + \frac{- \log\left( \sin x \right) + x \cot x}{x^2} \right]\]
\[ \Rightarrow \frac{dv}{dx} = \left( x \sin x \right)^\frac{1}{x} \left[ \frac{1 - \log x - \log\left( \sin x \right) + x \cot x}{x^2} \right]\]
\[ \Rightarrow \frac{dv}{dx} = \left( x \sin x \right)^\frac{1}{x} \left[ \frac{1 - \log\left( x\sin x \right) + x \cot x}{x^2} \right] . . . \left( iii \right)\]
\[\text{ From }\left( i \right), \left( ii \right)\text{ and } \left( iii \right), \text{ we obtain }\]
\[\frac{dy}{dx} = \left( x \cos x \right)^x \left[ 1 - x \tan x + \log\left( x \cos x \right) \right] + \left( x \sin x \right)^\frac{1}{x} \left[ \frac{x \cot x + 1 - \log\left( x \sin x \right)}{x^2} \right]\]
APPEARS IN
संबंधित प्रश्न
If the function f(x)=2x3−9mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.
Differentiate the following functions from first principles e3x.
Differentiate the following functions from first principles ecos x.
Differentiate sin (3x + 5) ?
Differentiate \[\log \left( cosec x - \cot x \right)\] ?
Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?
Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?
Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?
Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?
If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?
If \[y = \cos^{- 1} \left\{ \frac{2x - 3 \sqrt{1 - x^2}}{\sqrt{13}} \right\}, \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?
If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?
Differentiate \[x^{1/x}\] with respect to x.
Differentiate \[{10}^\left( {10}^x \right)\] ?
Differentiate \[x^{\sin^{- 1} x}\] ?
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
If \[y = x \sin y\] , prove that \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?
If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?
Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?
If \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?
If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?
If \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?
Differentiate log (1 + x2) with respect to tan−1 x ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?
If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?
If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?
If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .
If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .
If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .
If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?
If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?
If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?
If y = (sin−1 x)2, then (1 − x2)y2 is equal to
If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]
If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]