Advertisements
Advertisements
प्रश्न
If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?
उत्तर
We have,
\[x = 3\cos t - 2 \cos^3 t\]
\[ \Rightarrow \frac{dx}{dt} = 3\left( - \sin t \right) - 6 \cos^2 t\left( - \sin t \right)\]
\[ = - 3\sin t + 6\sin t \cos^2 t\]
Also,
\[y = 3\sin t - 2 \sin^3 t\]
\[ \Rightarrow \frac{dy}{dt} = 3\cos t - 6 \sin^2 t \cos t\]
Now,
\[\frac{dy}{dx} = \frac{\left( \frac{dy}{dt} \right)}{\left( \frac{dx}{dt} \right)}\]
\[ = \frac{3\cos t - 6 \sin^2 t \cos t}{- 3\sin t + 6\sin t \cos^2 t}\]
\[ = \frac{3\cos t\left( 1 - 2 \sin^2 t \right)}{3\sin t\left( - 1 + 2 \cos^2 t \right)}\]
\[ = \frac{\cot t\left( \cos2t \right)}{\left( \cos2t \right)}\]
\[ = \cot t\]
\[So, \frac{d^2 y}{d x^2} = \frac{d}{dx}\left( \frac{dy}{dx} \right)\]
\[ = \frac{d}{dx}\left( \cot t \right)\]
\[ = - {cosec}^2 t \frac{dt}{dx}\]
\[ = \frac{- {cosec}^2 t}{\left( \frac{dx}{dt} \right)}\]
\[ = \frac{- {cosec}^2 t}{- 3\sin t + 6\sin t \cos^2 t}\]
\[ = \frac{- {cosec}^2 t}{-3 \sin t\left( 1 - 2 \cos^2 t \right)}\]
\[ = \frac{{cosec}^3 t}{\left( - 3\cos 2t \right)}\]
\[ = \frac{- {cosec}^3 t}{3\cos 2t}\]
APPEARS IN
संबंधित प्रश्न
Differentiate \[e^{\sin} \sqrt{x}\] ?
Differentiate logx 3 ?
Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?
If \[y = e^x + e^{- x}\] prove that \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?
Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?
Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?
Differentiate \[x^{\sin x}\] ?
Differentiate \[\left( \log x \right)^{\cos x}\] ?
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
Find \[\frac{dy}{dx}\] \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?
If \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?
If \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?
If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]
If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?
Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?
Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?
\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?
If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .
Find the second order derivatives of the following function e6x cos 3x ?
Find the second order derivatives of the following function x cos x ?
If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?
If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?
If x = a(1 − cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{1}{a}\text { at } \theta = \frac{\pi}{2}\] ?
Find \[\frac{d^2 y}{d x^2}\] where \[y = \log \left( \frac{x^2}{e^2} \right)\] ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\]
If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =
If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is
Differentiate `log [x+2+sqrt(x^2+4x+1)]`
Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.