Advertisements
Advertisements
प्रश्न
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
उत्तर
\[\text{ Let, u }= {\sin^{- 1}} \left( \frac{2x}{1 + x^2} \right)\]
\[\text { Put x } = \tan\theta\]
\[ \Rightarrow u = \sin^{- 1} \left( \frac{2\tan\theta}{1 + \tan^2 \theta} \right)\]
\[ \Rightarrow u = \sin^{- 1} \left( \sin2\theta \right) . . . \left( i \right)\]
\[\text { Let v } = \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right)\]
\[ \Rightarrow v = \cos^{- 1} \left( \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \right)\]
\[ \Rightarrow v = \cos^{- 1} \left( \cos2\theta \right) . . . \left( ii \right)\]
\[\text { Here }, 0 < x < 1\]
\[ \Rightarrow 0 < \tan\theta < 1\]
\[ \Rightarrow 0 < \theta < \frac{\pi}{4}\]
\[\text { So, from equation } \left( i \right), \]
\[u = 2\theta .........\left[ \text { Since }, \sin^{- 1} \left( \sin\theta \right) = \theta , \text { if} \theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right]\]
\[ \Rightarrow u = 2 \tan^{- 1} x .........\left[ \text { Since } , x = \tan\theta \right]\]
Differentiating it with respect to x,
\[\frac{du}{dx} = \frac{2}{1 + x^2} . . . \left( iii \right)\]
\[\text { from equation } \left( ii \right), \]
\[v = 2\theta ........\left[ \text { Since }, \cos^{- 1} \left( \cos\theta \right) = \theta, if \theta \in \left[ 0, \pi \right] \right]\]
\[ \Rightarrow v = 2 \tan^{- 1} x .........\left[ \text { Since}, x = \tan\theta \right]\]
Differentiating it with respect to x,
\[\frac{dv}{dx} = \frac{2}{1 + x^2} . . . \left( iv \right)\]
\[\text { Dividing equation } \left( iii \right) \text {by} \left( iv \right), \]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{2}{1 + x^2} \times \frac{1 + x^2}{2}\]
\[ \therefore \frac{du}{dv} = 1\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .
Differentiate the following functions from first principles x2ex ?
Differentiate sin (log x) ?
Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?
Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?
If \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\] prove that \[\frac{dy}{dx} = \sec 2x\] ?
If \[y = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] .prove that \[\frac{dy}{dx} = 1 - y^2\] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
Prove that \[\frac{d}{dx} \left\{ \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right\} = \sqrt{a^2 - x^2}\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate the following with respect to x:
\[\cos^{- 1} \left( \sin x \right)\]
Find \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?
If \[\tan^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = a\] Prove that \[\frac{dy}{dx} = \frac{x}{y}\frac{\left( 1 - \tan a \right)}{\left( 1 + \tan a \right)}\] ?
If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?
Differentiate \[x^{\tan^{- 1} x }\] ?
If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?
If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?
If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?
Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?
If \[f'\left( x \right) = \sqrt{2 x^2 - 1} \text { and y } = f \left( x^2 \right)\] then find \[\frac{dy}{dx} \text { at } x = 1\] ?
If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?
The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .
If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\] then `f' (x)` is equal to ____________ .
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
Find the second order derivatives of the following function e6x cos 3x ?
If y = e−x cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?
If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?
If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]
Differentiate sin(log sin x) ?