हिंदी

Find D Y D X in the Following Case E X − Y = Log ( X Y ) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find  \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?

 

योग

उत्तर

\[\text{ We have, } e^{x - y} = \log\left( \frac{x}{y} \right)\]
Differentiate with respect to x,
\[\frac{d}{dx}\left( e^{x - y} \right) = \frac{d}{dx}\left\{ \log\left( \frac{x}{y} \right) \right\}\]
\[ \Rightarrow e^\left( x - y \right) \frac{d}{dx}\left( x - y \right) = \frac{1}{\left( \frac{x}{y} \right)} \times \frac{d}{dx}\left( \frac{x}{y} \right) \]
\[ \Rightarrow e^\left( x - y \right) \left( 1 - \frac{d y}{d x} \right) = \frac{y}{x}\left[ \frac{y\frac{d}{dx}\left( x \right) - x\frac{d y}{d x}}{y^2} \right] \]
\[ \Rightarrow e^\left( x - y \right) - e^\left( x - y \right) \frac{d y}{d x} = \frac{1}{xy}\left[ y\left( 1 \right) - x\frac{d y}{d x} \right]\]
\[ \Rightarrow e^\left( x - y \right) - e^\left( x - y \right) \frac{d y}{d x} = \frac{1}{x} - \frac{1}{y}\frac{d y}{d x}\]
\[ \Rightarrow \frac{1}{y}\frac{d y}{d x} - e^\left( x - y \right) \frac{d y}{d x} = \frac{1}{x} - e^\left( x - y \right) \]
\[ \Rightarrow \frac{d y}{d x}\left[ \frac{1}{y} - \frac{e^\left( x - y \right)}{1} \right] = \frac{1}{x} - \frac{e^\left( x - y \right)}{1}\]
\[ \Rightarrow \frac{d y}{d x}\left[ \frac{1 - y e^\left( x - y \right)}{y} \right] = \frac{1 - x e^\left( x - y \right)}{x}\]
\[ \Rightarrow \frac{d y}{d x} = \frac{y}{x}\left[ \frac{1 - x e^\left( x - y \right)}{1 - y e^\left( x - y \right)} \right]\]
\[ \Rightarrow \frac{d y}{d x} = \frac{- y}{- x}\left[ \frac{x e^\left( x - y \right) - 1}{y e^\left( x - y \right) - 1} \right]\]
\[ \Rightarrow \frac{d y}{d x} = \frac{y}{x}\left[ \frac{x e^\left( x - y \right) - 1}{y e^\left( x - y \right) - 1} \right]\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.04 [पृष्ठ ७४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.04 | Q 10 | पृष्ठ ७४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate tan 5x° ?


Differentiate \[e^\sqrt{\cot x}\] ?


Differentiate \[\log \left( \cos x^2 \right)\] ?


If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?

 


If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?


Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?


Differentiate  \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\]  ?


Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?


Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.


If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?


Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\]  ?


Find  \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?


Find  \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?

 


Differentiate \[{10}^\left( {10}^x \right)\] ?


Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?


find  \[\frac{dy}{dx}\]  \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?

 


If  \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?

 


Find \[\frac{dy}{dx}\] , when \[x = b   \sin^2   \theta  \text{ and }  y = a   \cos^2   \theta\] ?


Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta  = \frac{\pi}{2}\] ?


Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?


Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?


Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?


Differentiate log (1 + x2) with respect to tan−1 x ?


If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?


If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?


If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\]  ?


If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?


If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .


If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?


If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?


If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?


If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?


If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?


Let f(x) be a polynomial. Then, the second order derivative of f(ex) is



If y = etan x, then (cos2 x)y2 =


If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]

 


If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×