हिंदी

Find D Y D X Y = ( X 2 − 1 ) 3 ( 2 X − 1 ) √ ( X − 3 ) ( 4 X − 1 ) ? - Mathematics

Advertisements
Advertisements

प्रश्न

find  \[\frac{dy}{dx}\]  \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?

 

उत्तर

\[\text{ We have, y } = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right)\left( 4x - 1 \right)}} . . . \left( i \right)\]

\[ \Rightarrow y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\left( x - 3 \right)^\frac{1}{2} \left( 4x - 1 \right)^\frac{1}{2}}\]

Taking log on both sides,

\[\log y = \log\left[ \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\left( x - 3 \right)^\frac{1}{2} \left( 4x - 1 \right)^\frac{1}{2}} \right]\]
\[ \Rightarrow \log y = \log \left( x^2 - 1 \right)^3 + \log\left( 2x - 1 \right) - \log \left( x - 3 \right)^\frac{1}{2} - \log \left( 4x - 1 \right)^\frac{1}{2} \]
\[ \Rightarrow \log y = 3 \log\left( x^2 - 1 \right) + \log\left( 2x - 1 \right) - \frac{1}{2}\log\left( x - 3 \right) - \frac{1}{2}\log\left( 4x - 1 \right)\]

Differentiating with respect to x using chain rule,

\[\frac{1}{y}\frac{dy}{dx} = 3\frac{d}{dx}\left\{ \log\left( x^2 - 1 \right) \right\} + \frac{d}{dx}\left\{ \log\left( 2x - 1 \right) \right\} - \frac{1}{2}\frac{d}{dx}\left\{ \log\left( x - 3 \right) \right\} - \frac{1}{2}\left\{ \log\left( 4x - 1 \right) \right\}\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = 3\left( \frac{1}{x^2 - 1} \right)\frac{d}{dx}\left( x^2 - 1 \right) + \frac{1}{\left( 2x - 1 \right)}\frac{d}{dx}\left( 2x - 1 \right) - \frac{1}{2}\left( \frac{1}{x - 3} \right)\frac{d}{dx}\left( x - 3 \right) - \frac{1}{2}\frac{1}{\left( 4x - 1 \right)}\frac{d}{dx}\left( 4x - 1 \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = 3\left( \frac{1}{x^2 - 1} \right)\left( 2x \right) + \frac{1}{2x - 1}\left( 2 \right) - \frac{1}{2}\left( \frac{1}{x - 3} \right)\left( 1 \right) - \frac{1}{2}\left( \frac{1}{4x - 1} \right)\left( 4 \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \left[ \frac{6x}{x^2 - 1} + \frac{2}{2x - 1} - \frac{1}{2\left( x - 3 \right)} - \frac{2}{4x - 1} \right]\]
\[ \Rightarrow \frac{dy}{dx} = y\left[ \frac{6x}{x^2 - 1} + \frac{2}{2x - 1} - \frac{1}{2\left( x - 3 \right)} - \frac{2}{4x - 1} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right)\left( 4x - 1 \right)}}\left[ \frac{6x}{x^2 - 1} + \frac{2}{2x - 1} - \frac{1}{2\left( x - 3 \right)} - \frac{2}{4x - 1} \right] \left[ \text{ using equation} \left( i \right) \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.05 [पृष्ठ ८९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.05 | Q 21 | पृष्ठ ८९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles ecos x.


Differentiate \[3^{e^x}\] ?


Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?


Differentiate \[e^{3 x} \cos 2x\] ?


 If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?


If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?


Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?


Find  \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?

 


If \[\tan^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = a\] Prove that  \[\frac{dy}{dx} = \frac{x}{y}\frac{\left( 1 - \tan a \right)}{\left( 1 + \tan a \right)}\] ?


Differentiate \[\left( \sin^{- 1} x \right)^x\] ?


If `y=(sinx)^x + sin^-1 sqrtx  "then find"  dy/dx` 


If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?


If \[e^x + e^y = e^{x + y}\] , prove that

\[\frac{dy}{dx} + e^{y - x} = 0\] ?


If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?


Find the derivative of the function f (x) given by  \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?

 


Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?


If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?


\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?


Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\]  ?

 


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with  respect to \[\sec^{- 1} x\] ?


Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?


If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?


If f (x) is an odd function, then write whether `f' (x)` is even or odd ?


The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]


Find the second order derivatives of the following function  x3 + tan x ?


Find the second order derivatives of the following function sin (log x) ?


If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?


If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?


If y = 3 e2x + 2 e3x, prove that  \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?


If y = cosec−1 xx >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?


\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?


If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?


Differentiate `log [x+2+sqrt(x^2+4x+1)]`


f(x) = 3x2 + 6x + 8, x ∈ R


Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×