Advertisements
Advertisements
प्रश्न
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
उत्तर
\[ \Rightarrow e^\left( x - y \right) \frac{d}{dx}\left( x - y \right) = \frac{1}{\left( \frac{x}{y} \right)} \times \frac{d}{dx}\left( \frac{x}{y} \right) \]
\[ \Rightarrow e^\left( x - y \right) \left( 1 - \frac{d y}{d x} \right) = \frac{y}{x}\left[ \frac{y\frac{d}{dx}\left( x \right) - x\frac{d y}{d x}}{y^2} \right] \]
\[ \Rightarrow e^\left( x - y \right) - e^\left( x - y \right) \frac{d y}{d x} = \frac{1}{xy}\left[ y\left( 1 \right) - x\frac{d y}{d x} \right]\]
\[ \Rightarrow e^\left( x - y \right) - e^\left( x - y \right) \frac{d y}{d x} = \frac{1}{x} - \frac{1}{y}\frac{d y}{d x}\]
\[ \Rightarrow \frac{1}{y}\frac{d y}{d x} - e^\left( x - y \right) \frac{d y}{d x} = \frac{1}{x} - e^\left( x - y \right) \]
\[ \Rightarrow \frac{d y}{d x}\left[ \frac{1}{y} - \frac{e^\left( x - y \right)}{1} \right] = \frac{1}{x} - \frac{e^\left( x - y \right)}{1}\]
\[ \Rightarrow \frac{d y}{d x}\left[ \frac{1 - y e^\left( x - y \right)}{y} \right] = \frac{1 - x e^\left( x - y \right)}{x}\]
\[ \Rightarrow \frac{d y}{d x} = \frac{y}{x}\left[ \frac{1 - x e^\left( x - y \right)}{1 - y e^\left( x - y \right)} \right]\]
\[ \Rightarrow \frac{d y}{d x} = \frac{- y}{- x}\left[ \frac{x e^\left( x - y \right) - 1}{y e^\left( x - y \right) - 1} \right]\]
\[ \Rightarrow \frac{d y}{d x} = \frac{y}{x}\left[ \frac{x e^\left( x - y \right) - 1}{y e^\left( x - y \right) - 1} \right]\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .
Differentiate tan (x° + 45°) ?
Differentiate \[3^{e^x}\] ?
Differentiate \[e^\sqrt{\cot x}\] ?
Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?
If \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\] prove that \[\frac{dy}{dx} = \sec 2x\] ?
If \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?
If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?
Prove that \[\frac{d}{dx} \left\{ \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right\} = \sqrt{a^2 - x^2}\] ?
Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.
Find \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?
If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?
Differentiate \[x^{\sin x}\] ?
Differentiate \[x^{\tan^{- 1} x }\] ?
If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?
If \[e^x + e^y = e^{x + y}\] , prove that
\[\frac{dy}{dx} + e^{y - x} = 0\] ?
If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?
\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ?
If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .
If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .
Find the second order derivatives of the following function log (sin x) ?
If y = (sin−1 x)2, prove that (1 − x2)
\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If y = cosec−1 x, x >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?
\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?
\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text { and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?
\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]
\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?
If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]