Advertisements
Advertisements
प्रश्न
If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?
उत्तर
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{\left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)}\frac{d}{dx}\left( \frac{x^2 + x + 1}{x^2 - x + 1} \right) + \frac{2}{\sqrt{3}}\left\{ \frac{1}{1 + \left( \frac{\sqrt{3x}}{1 - x^2} \right)^2} \right\}\frac{d}{dx}\left( \frac{\sqrt{3}x}{1 - x^2} \right)\]
\[ \Rightarrow \frac{dy}{dx} = \left( \frac{x^2 - x + 1}{x^2 + x + 1} \right)\left( \frac{\left( x^2 - x + 1 \right)\frac{d}{dx}\left( x^2 + x + 1 \right) - \left( x^2 + x + 1 \right)\frac{d}{dx}\left( x^2 - x + 1 \right)}{\left( x^2 - x + 1 \right)^2} \right) + \frac{2}{\sqrt{3}}\left\{ \frac{\left( 1 - x^2 \right)^2}{1 + x^4 - 2 x^2 + 3 x^2} \right\} \left\{ \frac{\left( 1 - x^2 \right)\frac{d}{dx}\left( \sqrt{3}x \right) - \sqrt{3}x\frac{d}{dx}\left( 1 - x^2 \right)}{\left( 1 - x^2 \right)^2} \right\}\]
\[ \Rightarrow \frac{dy}{dx} = \left( \frac{1}{x^2 + x + 1} \right)\left\{ \frac{\left( x^2 - x + 1 \right)\left( 2x + 1 \right) - \left( x^2 + x + 1 \right)\left( 2x - 1 \right)}{\left( x^2 - x + 1 \right)} \right\} + \frac{2}{\sqrt{3}}\left\{ \frac{\left( 1 - x^2 \right)^2}{1 + x^2 + x^4} \right\}\left\{ \frac{\left( 1 - x^2 \right)\left( \sqrt{3} \right) - \sqrt{3}x\left( - 2x \right)}{\left( 1 - x^2 \right)^2} \right\}\]
\[ \Rightarrow \frac{dy}{dx} = \left( \frac{2 x^3 - 2 x^2 + 2x + x^2 - x + 1 - 2 x^3 - 2 x^2 - 2x + x^2 + x + 1}{x^4 + 2 x^2 + 1 - x^2} \right) + \frac{2}{\sqrt{3}}\left( \frac{\sqrt{3} - \sqrt{3} x^2 + 2\sqrt{3} x^2}{1 + x^2 + x^4} \right)\]
\[ \Rightarrow \frac{dy}{dx} = \left( \frac{- 2 x^2 + 2}{x^4 + x^2 + 1} \right) + \frac{2\sqrt{3}\left( x^2 + 1 \right)}{\sqrt{3}\left( 1 + x^2 + x^4 \right)}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2\left( 1 - x^2 \right)}{\left( x^4 + x^2 + 1 \right)} + \frac{2\left( x^2 + 1 \right)}{1 + x^2 + x^4}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2\left( 1 - x^2 + x^2 + 1 \right)}{1 + x^2 + x^4}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{4}{1 + x^2 + x^4}\]
APPEARS IN
संबंधित प्रश्न
Differentiate etan x ?
Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?
Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?
Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\] with respect to x ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
Differentiate \[e^{x \log x}\] ?
Differentiate \[\sin \left( x^x \right)\] ?
Find \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
If \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?
If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?
If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?
Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ?
Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?
The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .
If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .
If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .
If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .
Find the second order derivatives of the following function log (sin x) ?
If y = x + tan x, show that \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?
If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?
If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?
If x = sin t, y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?
\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?
If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write \[\frac{d^2 y}{d x^2}\] in terms of y ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?