हिंदी

Find D Y D X , When X = 1 − T 2 1 + T 2 and Y = 2 T 1 + T 2 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find  \[\frac{dy}{dx}\] , when  \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?

 

उत्तर

\[\text{ We have, y } = \frac{2t}{1 + t^2}\]
\[\Rightarrow \frac{dy}{dt} = \left[ \frac{\left( 1 + t^2 \right)\frac{d}{dt}\left( 2t \right) - 2t\frac{d}{dt}\left( 1 + t^2 \right)}{\left( 1 + t^2 \right)^2} \right] \left[ \text{ using quotient rule } \right]\]
\[ \Rightarrow \frac{dy}{dt} = \left[ \frac{\left( 1 + t^2 \right)\left( 2 \right) - 2t\left( 2t \right)}{\left( 1 + t^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dy}{dt} = \left[ \frac{2 + 2 t^2 - 4 t^2}{\left( 1 + t^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dy}{dt} = \left[ \frac{2 - 2 t^2}{\left( 1 + t^2 \right)^2} \right] . . . \left( i \right)\]
\[\text{ and,} \]
\[x = \frac{1 - t^2}{1 + t^2}\]
\[\Rightarrow \frac{dx}{dt} = \left[ \frac{\left( 1 + t^2 \right)\frac{d}{dt}\left( 1 - t^2 \right) - \left( 1 - t^2 \right)\frac{d}{dt}\left( 1 + t^2 \right)}{\left( 1 + t^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dx}{dt} = \left[ \frac{\left( 1 + t^2 \right)\left( - 2t \right) - \left( 1 - t^2 \right)\left( 2t \right)}{\left( 1 + t^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dx}{dt} = \left[ \frac{- 4t}{\left( 1 + t^2 \right)^2} \right] . . . \left( ii \right)\]
\[\text{ Dividing equation} \left( i \right) \text{ by } \left( ii \right), \text{ we get }, \]
\[\frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2\left( 1 - t^2 \right)}{\left( 1 + t^2 \right)^2} \times \frac{\left( 1 + t^2 \right)^2}{- 4t}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2\left( 1 - t^2 \right)}{- 4t}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{t^2 - 1}{2t}\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.07 [पृष्ठ १०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.07 | Q 13 | पृष्ठ १०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate etan x ?


Differentiate sin2 (2x + 1) ?


Differentiate \[\log \left( cosec x - \cot x \right)\] ?


Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?


Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?


If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?


If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that  \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?


Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?


If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?


Find  \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?


Find  \[\frac{dy}{dx}\] in the following case \[\left( x^2 + y^2 \right)^2 = xy\] ?

 


If  \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find}  \frac{dy}{dx}\] ?


If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?


If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?


Differentiate \[x^{\sin^{- 1} x}\]  ?


Differentiate \[\left( \tan x \right)^{1/x}\] ?


Differentiate  \[\left( x^x \right) \sqrt{x}\] ?


Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?


If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?


Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?


Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?


Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?


If  \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that  \[\frac{dy}{dx} = \frac{x}{y}\]?

 


If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?

 


Differentiate (log x)x with respect to log x ?


Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?


If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?


If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \]  to ∞, then find the value of  \[\frac{dy}{dx}\] ?


The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .


If y = x + tan x, show that  \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?


If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?


If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?


If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


If y = (sin−1 x)2, then (1 − x2)y2 is equal to

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×