Advertisements
Advertisements
प्रश्न
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?
उत्तर
Here,
\[y = \sin\left( \sin x \right)\]
\[\text { Differentiating w . r . t . x, we get }\]
\[\frac{d y}{d x} = \cos\left( \sin x \right) \cos x\]
\[\text { Differentiating again w . r . t . x, we get }\]
\[\frac{d^2 y}{d x^2} = - \sin\left( \sin x \right) \cos^2 x - \cos\left( \sin x \right) \sin x\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = - \sin\left( \sin x \right) \cos^2 x - \cos\left( \sin x \right) \cos x\tan x\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = - y \cos^2 x - \tan x\frac{d y}{d x}\]
\[ \Rightarrow \frac{d^2 y}{d x^2} + \tan x\frac{d y}{d x} + y \cos^2 x = 0\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
Differentiate sin (log x) ?
Differentiate \[e^{\tan 3 x} \] ?
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?
If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?
If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] , prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?
Differentiate \[\left( \tan x \right)^{1/x}\] ?
Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
If \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?
If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?
If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ?
If f (x) is an even function, then write whether `f' (x)` is even or odd ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .
If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .
If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .
Find the second order derivatives of the following function x3 + tan x ?
Find the second order derivatives of the following function e6x cos 3x ?
Find the second order derivatives of the following function tan−1 x ?
If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?
If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?
If x = 2 cos t − cos 2t, y = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?
\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =
If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`
Differentiate sin(log sin x) ?