Advertisements
Advertisements
प्रश्न
If x = 2 cos t − cos 2t, y = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?
उत्तर
Here,
\[x = 2 \cos t - \cos2t \text { and }y = 2 \sin t - \sin2t\]
\[\text{ Differentiating w . r . t . t, we get} \]
\[\frac{d x}{d t} = - 2 \sin t + 2 \sin2t \text { and }\frac{d y}{d t} = 2 \cos t - 2 \cos2t\]
\[ \therefore \frac{d y}{d x} = \frac{2 \cos t - 2 \cos2t}{- 2 \sin t + 2 \sin2t} = \frac{\cos t - \cos2t}{- \sin t + \sin2t}\]
\[\text { Differentiating w . r . t . x, we get}\]
\[\frac{d^2 y}{d x^2} = \frac{\left( - \sin t + 2 \sin2t \right)\left( - \sin t + \sin2t \right) - \left( \cos t - \cos2t \right)\left( - \cos t + 2 \cos2t \right)}{\left( - \sin t + \sin2t \right)^2}\frac{dt}{dx}\]
\[ = \frac{\left( - \sin t + 2 \sin2t \right)\left( - \sin t + \sin2t \right) - \left( \cos t - \cos2t \right)\left( - \cos t + 2 \cos2t \right)}{\left( - \sin t + \sin2t \right)^2 \left( - 2 \sin t + 2 \sin2t \right)}\]
\[\text { At } t = \frac{\pi}{2}: \]
\[\frac{d^2 y}{d x^2} = \frac{\left( - 1 + 0 \right)\left( - 1 + 0 \right) - \left( 0 + 1 \right)\left( - 0 - 2 \right)}{\left( - 1 + 0 \right)^2 \left( - 2 + 0 \right)} = \frac{1 + 2}{- 2} = \frac{- 3}{2}\]
APPEARS IN
संबंधित प्रश्न
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
Differentiate the following functions from first principles eax+b.
Differentiate tan2 x ?
Differentiate \[3^{e^x}\] ?
Differentiate \[e^{\sin^{- 1} 2x}\] ?
If \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?
If \[y = \cos^{- 1} \left\{ \frac{2x - 3 \sqrt{1 - x^2}}{\sqrt{13}} \right\}, \text{ find } \frac{dy}{dx}\] ?
If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?
If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\] ?
Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?
If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?
Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?
If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?
If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?
If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
Find the second order derivatives of the following function log (sin x) ?
Find the second order derivatives of the following function log (log x) ?
If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?
If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?
If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.
If y = ex (sin x + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?
If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\]
If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\] is equal to
Differentiate sin(log sin x) ?
Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.
Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.