Advertisements
Advertisements
प्रश्न
Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?
उत्तर
\[\text{ Let y} = \left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right) \]
\[\text{ Also, Let u } = \left( x + \frac{1}{x} \right)^x \text{ and v } = x^\left( 1 + \frac{1}{x} \right) \]
\[ \therefore y = u + v\]
\[ \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} . . . \left( i \right)\]
\[\text{ Then, u } = \left( x + \frac{1}{x} \right)^x \]
\[ \Rightarrow \log u = \log \left( x + \frac{1}{x} \right)^x \]
\[ \Rightarrow \log u = x \log\left( x + \frac{1}{x} \right)\]
Differentiate both sides with respect to x,
\[\frac{1}{u}\frac{du}{dx} = \log\left( x + \frac{1}{x} \right)\frac{d}{dx}\left( x \right) + x\frac{d}{dx}\left[ \log\left( x + \frac{1}{x} \right) \right]\]
\[ \Rightarrow \frac{1}{u}\frac{du}{dx} = \log\left( x + \frac{1}{x} \right) + x\frac{1}{\left( x + \frac{1}{x} \right)}\frac{d}{dx}\left( x + \frac{1}{x} \right)\]
\[ \Rightarrow \frac{du}{dx} = u\left[ \log\left( x + \frac{1}{x} \right) + \frac{x}{\left( x + \frac{1}{x} \right)} \times \left( 1 - \frac{1}{x^2} \right) \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( x + \frac{1}{x} \right)^x \left[ \log\left( x + \frac{1}{x} \right) + \frac{\left( x - \frac{1}{x} \right)}{\left( x + \frac{1}{x} \right)} \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( x + \frac{1}{x} \right)^x \left[ \log\left( x + \frac{1}{x} \right) + \frac{x^2 - 1}{x^2 + 1} \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( x + \frac{1}{x} \right)^x \left[ \frac{x^2 - 1}{x^2 + 1} + \log\left( x + \frac{1}{x} \right) \right]\]
\[\text{ Again }, v = x^\left( 1 + \frac{1}{x} \right) \]
\[ \Rightarrow \log v = \log\left[ x^\left( 1 + \frac{1}{x} \right) \right]\]
\[ \Rightarrow \log v = \left( 1 + \frac{1}{x} \right)\log x\]
Differentiating both sides with respect to x,
\[\frac{1}{v}\frac{dv}{dx} = \log x\frac{d}{dx}\left( 1 + \frac{1}{x} \right) + \left( 1 + \frac{1}{x} \right)\frac{d}{dx}\log x\]
\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = \left( - \frac{1}{x^2} \right)\log x + \left( 1 + \frac{1}{x} \right)\left( \frac{1}{x} \right)\]
\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = - \frac{\log x}{x^2} + \frac{1}{x} + \frac{1}{x^2}\]
\[ \Rightarrow \frac{dv}{dx} = v\left[ \frac{- \log x + x + 1}{x^2} \right]\]
\[ \Rightarrow \frac{dv}{dx} = x^\left( 1 + \frac{1}{x} \right) \left( \frac{x + 1 - \log x}{x^2} \right) . . . \left( iii \right)\]
\[\text{ From } \left( i \right), \left( ii \right) \text{and} \left( iii \right),\text{ we obtain }\]
\[\frac{dy}{dx} = \left( x + \frac{1}{x} \right)^x \left[ \frac{x^2 - 1}{x^2 + 1} + \log\left( x + \frac{1}{x} \right) \right] + x^\left( 1 + \frac{1}{x} \right) \left( \frac{x + 1 - log x}{x^2} \right)\]
APPEARS IN
संबंधित प्रश्न
Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`
Differentiate sin2 (2x + 1) ?
Differentiate \[3^{e^x}\] ?
Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?
Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?
If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?
If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?
Differentiate \[\left( \sin^{- 1} x \right)^x\] ?
Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?
Find \[\frac{dy}{dx}\] \[y = x^x + \left( \sin x \right)^x\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
Find the derivative of the function f (x) given by \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?
\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?
Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?
If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?
If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .
If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .
If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .
Find the second order derivatives of the following function x3 + tan x ?
Find the second order derivatives of the following function tan−1 x ?
If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?
If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?
If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?
If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?
If y = 3 e2x + 2 e3x, prove that \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?
If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is
If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 =
If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]
If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`
\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]
\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]
Find the minimum value of (ax + by), where xy = c2.
Differentiate sin(log sin x) ?