Advertisements
Advertisements
प्रश्न
Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?
उत्तर
\[\text{ We have, x } = e^\theta \left( \theta + \frac{1}{\theta} \right)\]
Differentiating it with respect to \[\theta\]
\[\frac{dx}{d\theta} = e^\theta \frac{d}{d\theta}\left( \theta + \frac{1}{\theta} \right) + \left( \theta + \frac{1}{\theta} \right)\frac{d}{d\theta}\left( e^\theta \right) \left[ \text{ using product rule } \right]\]
\[ \Rightarrow \frac{dx}{d\theta} = e^\theta \left( 1 - \frac{1}{\theta^2} \right) + \left( \frac{\theta^2 + 1}{\theta} \right) e^\theta \]
\[ \Rightarrow \frac{dx}{d\theta} = e^\theta \left( 1 - \frac{1}{\theta^2} + \frac{\theta^2 + 1}{\theta} \right)\]
\[ \Rightarrow \frac{dx}{d\theta} = e^\theta \left( \frac{\theta^2 - 1 + \theta^3 + \theta}{\theta^2} \right)\]
\[ \Rightarrow \frac{dx}{d\theta} = \frac{e^\theta \left( \theta^3 + \theta^2 + \theta - 1 \right)}{\theta^2} . . . \left( i \right)\]
\[\text{ and }, \]
\[ y = e^\theta \left( \theta - \frac{1}{\theta} \right)\]
Differentiating it with respect to \[\theta\] using chain rule
\[\frac{dy}{d\theta} = e^{- \theta} \frac{d}{d\theta}\left( \theta - \frac{1}{\theta} \right) + \left( \theta - \frac{1}{\theta} \right)\frac{d}{d\theta}\left( e^{- \theta} \right) \left[ \text{ using product rule } \right]\]
\[ \Rightarrow \frac{dy}{d\theta} = e^{- \theta} \left( 1 + \frac{1}{\theta^2} \right) + \left( \theta - \frac{1}{\theta} \right) e^\theta \frac{d}{d\theta}\left( - \theta \right)\]
\[ \Rightarrow \frac{dy}{d\theta} = e^{- \theta} \left( 1 + \frac{1}{\theta^2} \right) + \left( \theta - \frac{1}{\theta} \right) e^{- \theta} \left( - 1 \right)\]
\[ \Rightarrow \frac{dy}{d\theta} = e^{- \theta} \left( 1 + \frac{1}{\theta^2} - \theta + \frac{1}{\theta} \right)\]
\[ \Rightarrow \frac{dy}{d\theta} = e^{- \theta} \left( \frac{\theta^2 + 1 - \theta^3 + \theta}{\theta^2} \right)\]
\[ \Rightarrow \frac{dy}{d\theta} = \frac{e^{- \theta} \left( - \theta^3 + \theta^2 + \theta + 1 \right)}{\theta^2} . . . \left( ii \right)\]
\[\text{ Dividing equation } \left( ii \right) by \left( i \right), \]
\[\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = e^{- \theta} \left( \frac{\theta^2 - \theta^3 + \theta + 1}{\theta^2} \right) \times \frac{\theta^2}{e^\theta \left( \theta^3 + \theta^2 + \theta - 1 \right)}\]
\[ = e^{- 2\theta} \left( \frac{\theta^2 - \theta^3 + \theta + 1}{\theta^3 + \theta^2 + \theta - 1} \right)\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles x2ex ?
Differentiate \[e^{\tan 3 x} \] ?
Differentiate \[\log \left( cosec x - \cot x \right)\] ?
Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?
Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?
Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?
If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?
If \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?
If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x^2 + y^2 \right)^2 = xy\] ?
If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?
If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?
If \[\tan^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = a\] Prove that \[\frac{dy}{dx} = \frac{x}{y}\frac{\left( 1 - \tan a \right)}{\left( 1 + \tan a \right)}\] ?
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?
Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?
Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?
If \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?
If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?
Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?
Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?
If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?
If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ?
If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .
If x = 2 cos t − cos 2t, y = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?
If y = 3 e2x + 2 e3x, prove that \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?
\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?
\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?
\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text { and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?
If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?
\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?
If x = 2at, y = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?
If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 =
If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is