Advertisements
Advertisements
प्रश्न
If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?
उत्तर
\[\text{ We have }, \sqrt{1 - x^2} + \sqrt{1 - y^2} = a\left( x - y \right)\]
\[\text{Let x } = \sin A , y = \sin B\]
\[ \Rightarrow \sqrt{1 - \sin^2 A} + \sqrt{1 - \sin^2 B} = a\left( \sin A - \sin B \right)\]
\[ \Rightarrow \cos A + \cos B = a\left( \sin A - \sin B \right) \]
\[ \Rightarrow a = \frac{\cos A + \cos B}{\sin A - \sin B}\]
\[ \Rightarrow a = \frac{2 \cos\frac{A + B}{2}\cos\frac{A - B}{2}}{2 \cos\frac{A + B}{2}\sin\frac{A - B}{2}} ...........[\because \sin A - \sin B = 2 \cos\frac{A + B}{2}\sin\frac{A - B}{2} \text{ and } \cos A + \cos B = 2 \cos\frac{A + B}{2}\cos\frac{A - B}{2}]\]
\[ \Rightarrow a = \cot\left( \frac{A - B}{2} \right)\]
\[ \Rightarrow \cot^{- 1} a = \frac{A - B}{2}\]
\[ \Rightarrow 2 \cot^{- 1} a = A - B\]
\[ \Rightarrow 2 \cot^{- 1} a = \sin^{- 1} x - \sin^{- 1} y ..........\left[ \because x = \sin A, y = \sin B \right]\]
Differentiating with respect to x, we get,
\[\frac{d}{dx}\left( 2co t^{- 1} a \right) = \frac{d}{dx}\left( \sin^{- 1} x \right) - \frac{d}{dx}\left( \sin^{- 1} y \right)\]
\[ \Rightarrow 0 = \frac{1}{\sqrt{1 - x^2}} - \frac{1}{\sqrt{1 - y^2}}\frac{d y}{d x}\]
\[ \Rightarrow \frac{1}{\sqrt{1 - y^2}}\frac{d y}{d x} = \frac{1}{\sqrt{1 - x^2}}\]
\[ \Rightarrow \frac{d y}{d x} = \frac{\sqrt{1 - y^2}}{\sqrt{1 - x^2}}\]
\[ \Rightarrow \frac{d y}{d x} = \sqrt{\frac{1 - y^2}{1 - x^2}}\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .
Differentiate sin (3x + 5) ?
Differentiate tan (x° + 45°) ?
Differentiate tan 5x° ?
Differentiate `2^(x^3)` ?
Differentiate \[e^{\tan 3 x} \] ?
Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?
Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
Differentiate
\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?
Find \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?
If `y=(sinx)^x + sin^-1 sqrtx "then find" dy/dx`
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
If \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?
If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?
If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?
If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?
If \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that \[\frac{dy}{dx} = \frac{x}{y}\]?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with respect to \[\sec^{- 1} x\] ?
If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?
If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .
\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .
If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\] is equal to ______________ .
If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .
If x = cos θ, y = sin3 θ, prove that \[y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 3 \sin^2 \theta\left( 5 \cos^2 \theta - 1 \right)\] ?
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?
If y = 3 e2x + 2 e3x, prove that \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
If `x=a (cos t +t sint )and y= a(sint-cos t )` Prove that `Sec^3 t/(at),0<t< pi/2`
Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.