Advertisements
Advertisements
प्रश्न
उत्तर
\[\cos y = x\cos\left( a + y \right)\]
\[ \Rightarrow - \sin y\frac{dy}{dx} = \cos\left( a + y \right) - x\sin\left( a + y \right)\frac{dy}{dx}\]
\[ \Rightarrow - \sin y\frac{dy}{dx} + x\sin\left( a + y \right)\frac{dy}{dx} = \cos\left( a + y \right)\]
\[ \Rightarrow \frac{dy}{dx}\left[ \frac{\cos y}{\cos\left( a + y \right)}\sin\left( a + y \right) - \sin y \right] = \cos\left( a + y \right) \left[ \because x = \frac{\cos y}{\cos\left( a + y \right)} \right]\]
\[ \Rightarrow \frac{dy}{dx}\left[ \frac{\cos y\sin\left( a + y \right) - \sin y\cos\left( a + y \right)}{\cos\left( a + y \right)} \right] = \cos\left( a + y \right)\]
\[ \Rightarrow \frac{dy}{dx}\left[ \frac{\sin\left( a + y - y \right)}{\cos\left( a + y \right)} \right] = \cos\left( a + y \right)\]
\[ \Rightarrow \frac{dy}{dx}\left[ \frac{\sin a}{\cos\left( a + y \right)} \right] = \cos\left( a + y \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles e3x.
Differentiate the following functions from first principles sin−1 (2x + 3) ?
Differentiate \[3^{e^x}\] ?
Differentiate \[e^{\tan 3 x} \] ?
Differentiate \[\tan^{- 1} \left( e^x \right)\] ?
If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^{2/3} + y^{2/3} = a^{2/3}\] ?
If \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find} \frac{dy}{dx}\] ?
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Differentiate \[e^{x \log x}\] ?
Differentiate \[{10}^\left( {10}^x \right)\] ?
Differentiate \[\left( \tan x \right)^{1/x}\] ?
Find \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
If \[y = \sin \left( x^x \right)\] prove that \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?
If \[e^x + e^y = e^{x + y}\] , prove that
\[\frac{dy}{dx} + e^{y - x} = 0\] ?
If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?
If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?
Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?
Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?
If \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that \[\frac{dy}{dx} = \frac{x}{y}\]?
If \[x = \frac{\sin^3 t}{\sqrt{\cos 2 t}}, y = \frac{\cos^3 t}{\sqrt{\cos t 2 t}}\] , find\[\frac{dy}{dx}\] ?
Differentiate (log x)x with respect to log x ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?
If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?
If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?
Differential coefficient of sec(tan−1 x) is ______.
If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
Find the second order derivatives of the following function x3 + tan x ?
If y = x + tan x, show that \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?
\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text { and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?
If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?
If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to