Advertisements
Advertisements
प्रश्न
If \[y = \sin \left( x^x \right)\] prove that \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?
उत्तर
\[\text{ Let y} = \sin\left( x^x \right) . . . \left( i \right)\]
\[\text{ Also, Let u} = x^x . . . \left( ii \right)\]
\[\text{ Taking log on both sides}, \]
\[ \Rightarrow \log u = \log x^x \]
\[ \Rightarrow \log u = x\log x\]
Differentiating both sides with respect to x,
\[\frac{1}{u}\frac{du}{dx} = \frac{d}{dx}\left( x \log x \right)\]
\[ \Rightarrow \frac{1}{u}\frac{du}{dx} = x\frac{d}{dx}\left( \log x \right) + \log x\frac{d}{dx}x\]
\[ \Rightarrow \frac{1}{u}\frac{du}{dx} = x\left( \frac{1}{x} \right) + \log x\left( 1 \right)\]
\[ \Rightarrow \frac{1}{u}\frac{du}{dx} = 1 + \log x\]
\[ \Rightarrow \frac{du}{dx} = u\left( 1 + \log x \right)\]
\[ \Rightarrow \frac{du}{dx} = x^x \left( 1 + \log x \right) . . . \left( iii \right) \left[ \text{ using equation }\left( ii \right) \right]\]
\[\text{ Now, using equation} \left( ii \right) \text{ in equation} \left( i \right), \]
\[y = \sin u\]
\[\text{ Differentiating with respect to x,} \]
\[\frac{dy}{dx} = \frac{d}{dx}\left( \sin u \right)\]
\[ \Rightarrow \frac{dy}{dx} = \cos u\frac{du}{dx}\]
\[\text{ Using equation} \left( ii \right)\text{ and } \left( iii \right), \]
\[\frac{dy}{dx} = \cos\left( x^x \right) \times x^x \left( 1 + \log x \right)\]
APPEARS IN
संबंधित प्रश्न
Differentiate sin2 (2x + 1) ?
Differentiate `2^(x^3)` ?
Differentiate \[3^{e^x}\] ?
Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?
Differentiate \[3^{x \log x}\] ?
Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?
If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?
If \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?
If \[y = \cos^{- 1} \left\{ \frac{2x - 3 \sqrt{1 - x^2}}{\sqrt{13}} \right\}, \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?
If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?
If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?
Differentiate \[x^{\tan^{- 1} x }\] ?
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
If \[xy \log \left( x + y \right) = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
Find the derivative of the function f (x) given by \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?
If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?
Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?
Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?
If \[x = \cos t \text{ and y } = \sin t,\] prove that \[\frac{dy}{dx} = \frac{1}{\sqrt{3}} \text { at } t = \frac{2 \pi}{3}\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?
If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?
If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \] to ∞, then find the value of \[\frac{dy}{dx}\] ?
\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]
If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to
If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?
\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]
\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]
Find the minimum value of (ax + by), where xy = c2.
Differentiate sin(log sin x) ?
f(x) = 3x2 + 6x + 8, x ∈ R