हिंदी

If E Y = Y X , Prove that D Y D X = ( Log Y ) 2 Log Y − 1 ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?

उत्तर

\[\text{ We have }, e^y = y^x \] 

Taking log on both sides,

\[\log e^y = \log y^x \]
\[ \Rightarrow y \log e = x \log y \]
\[ \Rightarrow y = x \log y . . . \left( i \right)\]

Differentiating with respect to x,

\[\frac{dy}{dx} = \frac{d}{dx}\left( x \log y \right)\]
\[ \Rightarrow \frac{dy}{dx} = x\frac{dy}{dx}\left( \log y \right) + \log y\frac{d}{dx}\left( x \right) \]
\[ \Rightarrow \frac{dy}{dx} = \frac{x}{y}\frac{dy}{dx} + \log y \]
\[ \Rightarrow \frac{dy}{dx}\left( 1 - \frac{x}{y} \right) = \log y\]
\[ \Rightarrow \frac{dy}{dx}\left( \frac{y - x}{y} \right) = \log y\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y \log  \ y}{y - x}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y \log \ y}{\left( y - \frac{y}{\log \ y} \right)} \left[ \text{ Using equation} \left( i \right) \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y \log y\left( \log y \right)}{y \log \ y - y}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y \left( \log y \right)^2}{y\left( \log \ y - 1 \right)}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( \log y \right)^2}{\left( \log y - 1 \right)}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.05 [पृष्ठ ९०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.05 | Q 44 | पृष्ठ ९०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`


Differentiate logx 3 ?


Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?


Differentiate \[\log \left( cosec x - \cot x \right)\] ?


Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?


Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?


If \[y = \frac{x}{x + 2}\]  , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ? 


If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?

 


If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?


If \[y = \sqrt{x^2 + a^2}\] prove that  \[y\frac{dy}{dx} - x = 0\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\]  with respect to x ?


If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?


Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?


Find  \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?

 


Find  \[\frac{dy}{dx}\]  \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?

 


Find \[\frac{dy}{dx}\]

\[y = x^x + x^{1/x}\] ?


If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?


If  \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?

 


Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?


If  \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?


If  \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that  \[\frac{dy}{dx} = \frac{x}{y}\]?

 


If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?


If  \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?


Differentiate x2 with respect to x3


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\]  ?


If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .


If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .


If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?


If  \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?


If y = sin (log x), prove that \[x^2 \frac{d^2 y}{d x^2} + x\frac{dy}{dx} + y = 0\] ?


If y = cosec−1 xx >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?


\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?


If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]

 


If `x=a (cos t +t sint )and y= a(sint-cos t )`  Prove that `Sec^3 t/(at),0<t< pi/2` 


Differentiate the following with respect to x

\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]


The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:

Year Jan-March April-June July-Sept. Oct.-Dec.
2010 70 60 45 72
2011 79 56 46 84
2012 90 64 45 82

Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×