हिंदी

If Y = Tan − 1 { Log E ( E / X 2 ) Log E ( E X 2 ) } + Tan − 1 ( 3 + 2 Log E X 1 − 6 Log E X ) , Then D 2 Y D X 2 = - Mathematics

Advertisements
Advertisements

प्रश्न

If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]

 

विकल्प

  • 2

  • 1

  • 0

  • −1

MCQ

उत्तर

(c) 0

\[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\]

\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{1 - 2 \log_e x}{1 + 2 \log_e x} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\]

\[ \Rightarrow y = \tan^{- 1} \left( \frac{\frac{1 - 2 \log_e x}{1 + 2 \log_e x} + \frac{3 + 2 \log_e x}{1 - 6 \log_e x}}{1 - \left( \frac{1 - 2 \log_e x}{1 + 2 \log_e x} \right)\left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)} \right)\]

\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{\left( 1 - 2 \log_e x \right)\left( 1 - 6 \log_e x \right) + \left( 3 + 2 \log_e x \right)\left( 1 + 2 \log_e x \right)}{\left( 1 + 2 \log_e x \right)\left( 1 - 6 \log_e x \right) - \left( 1 - 2 \log_e x \right)\left( 3 + 2 \log_e x \right)} \right\}\]

\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{1 - 8 \log_e x + 12 \left( \log_e x \right)^2 + 3 + 8 \log_e x + 4 \left( \log_e x \right)^2}{1 - 4 \log_e x - 12 \left( \log_e x \right)^2 - 3 + 4 \log_e x + 4 \left( \log_e x \right)^2} \right\}\]

\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{1 - 8 \log_e x + 12 \left( \log_e x \right)^2 + 3 + 8 \log_e x + 4 \left( \log_e x \right)^2}{1 - 4 \log_e x - 12 \left( \log_e x \right)^2 - 3 + 4 \log_e x + 4 \left( \log_e x \right)^2} \right\}\]

\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{4 + 16 \left( \log_e x \right)^2}{- 2 - 8 \left( \log_e x \right)^2} \right\}\]

\[ \Rightarrow y = \tan^{- 1} \left[ \frac{4\left\{ 1 + 4 \left( \log_e x \right)^2 \right\}}{- 2\left\{ 1 + 4 \left( \log_e x \right)^2 \right\}} \right]\]

\[ \Rightarrow y = \tan^{- 1} \left[ - 2 \right]\]

\[ \Rightarrow \frac{dy}{dx} = 0\]

\[ \Rightarrow \frac{d^2 y}{d x^2} = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Higher Order Derivatives - Exercise 12.3 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 12 Higher Order Derivatives
Exercise 12.3 | Q 10 | पृष्ठ २३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If the function f(x)=2x39mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.

 


Differentiate the following functions from first principles e3x.


Differentiate the following functions from first principles eax+b.


Differentiate tan (x° + 45°) ?


Differentiate \[e^{\sin} \sqrt{x}\] ?


Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?


Differentiate  \[e^x \log \sin 2x\] ?


Differentiate \[e^{ax} \sec x \tan 2x\] ?


Differentiate \[\cos \left( \log x \right)^2\] ?


If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that  \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?


If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?


If \[y = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x > 0\] ,prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2} \] ? 


Find  \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?

 


If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?


If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?


Differentiate \[x^{\tan^{- 1} x }\]  ?


If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?


If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?


If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?

 


Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?


If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?


If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?


\[\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}, \text { find }  \frac{dy}{dx}\] ?

Differentiate log (1 + x2) with respect to tan−1 x ?


Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text {  if }0 < x < 1\] ?


Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.


If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?


If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\]  ?


The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .


Given  \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .


\[\frac{d}{dx} \left[ \log \left\{ e^x \left( \frac{x - 2}{x + 2} \right)^{3/4} \right\} \right]\] equals ___________ .

If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then  } \frac{dy}{dx}\] is equal to ___________ .


Find the second order derivatives of the following function  x3 + tan x ?


If y = 3 e2x + 2 e3x, prove that  \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?


If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?


If `x=a (cos t +t sint )and y= a(sint-cos t )`  Prove that `Sec^3 t/(at),0<t< pi/2` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×