Advertisements
Advertisements
प्रश्न
If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then } \frac{dy}{dx}\] is equal to ___________ .
विकल्प
`1/2`
0
1
none of these
उत्तर
`1`
\[\text { We have, y } = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{1 + \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right)^2}\frac{d}{dx}\left( \frac{\sin x + \cos x}{\cos x - \sin x} \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( \cos x - \sin x \right)^2}{\left( \cos x - \sin x \right)^2 + \left( \sin x + \cos x \right)^2}\left[ \frac{\left( \cos x - \sin x \right)\frac{d}{dx}\left( \sin x + \cos x \right) - \left( \sin x + \cos x \right)\frac{d}{dx}\left( \cos x - \sin x \right)}{\left( \cos x - \sin x \right)^2} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( \cos x - \sin x \right)^2}{\left( \cos x - \sin x \right)^2 + \left( \sin x + \cos x \right)^2}\left[ \frac{\left( \cos x - \sin x \right)\left( \cos x - \sin x \right) - \left( \sin x + \cos x \right)\left( - \sin x - \cos x \right)}{\left( \cos x - \sin x \right)^2} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( \cos x - \sin x \right)^2}{\left( \cos x - \sin x \right)^2 + \left( \sin x + \cos x \right)^2}\left[ \frac{\left( \cos x - \sin x \right)\left( \cos x - \sin x \right) + \left( \sin x + \cos x \right)\left( \sin x + \cos x \right)}{\left( \cos x - \sin x \right)^2} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( \cos x - \sin x \right)^2}{\left( \cos x - \sin x \right)^2 + \left( \sin x + \cos x \right)^2} \times \frac{\left( \cos x - \sin x \right)^2 + \left( \sin x + \cos x \right)^2}{\left( \cos x - \sin x \right)^2}\]
\[ \Rightarrow \frac{dy}{dx} = 1\]
APPEARS IN
संबंधित प्रश्न
Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`
Differentiate the following functions from first principles eax+b.
Differentiate the following functions from first principles \[e^\sqrt{2x}\].
Differentiate tan2 x ?
Differentiate `2^(x^3)` ?
Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?
Differentiate \[e^\sqrt{\cot x}\] ?
Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
Differentiate \[\cos \left( \log x \right)^2\] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
If \[y = \sqrt{a^2 - x^2}\] prove that \[y\frac{dy}{dx} + x = 0\] ?
Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\] ?
Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?
Differentiate
\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.
Differentiate the following with respect to x:
\[\cos^{- 1} \left( \sin x \right)\]
If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?
If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?
Differentiate \[{10}^\left( {10}^x \right)\] ?
If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?
If \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?
If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?
If \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that \[\frac{dy}{dx} = \frac{x}{y}\]?
If \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?
If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \] to ∞, then find the value of \[\frac{dy}{dx}\] ?
If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?
For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text { at } \left( 1/4, 1/4 \right)\text { is }\] _____________ .
If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\] then the derivative of f (x) in the interval [0, 7] is ____________ .
If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
If \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?
\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?
If x = 2at, y = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?
If y = etan x, then (cos2 x)y2 =