Advertisements
Advertisements
प्रश्न
If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]
पर्याय
2
1
0
−1
उत्तर
(c) 0
\[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\]
\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{1 - 2 \log_e x}{1 + 2 \log_e x} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\]
\[ \Rightarrow y = \tan^{- 1} \left( \frac{\frac{1 - 2 \log_e x}{1 + 2 \log_e x} + \frac{3 + 2 \log_e x}{1 - 6 \log_e x}}{1 - \left( \frac{1 - 2 \log_e x}{1 + 2 \log_e x} \right)\left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)} \right)\]
\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{\left( 1 - 2 \log_e x \right)\left( 1 - 6 \log_e x \right) + \left( 3 + 2 \log_e x \right)\left( 1 + 2 \log_e x \right)}{\left( 1 + 2 \log_e x \right)\left( 1 - 6 \log_e x \right) - \left( 1 - 2 \log_e x \right)\left( 3 + 2 \log_e x \right)} \right\}\]
\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{1 - 8 \log_e x + 12 \left( \log_e x \right)^2 + 3 + 8 \log_e x + 4 \left( \log_e x \right)^2}{1 - 4 \log_e x - 12 \left( \log_e x \right)^2 - 3 + 4 \log_e x + 4 \left( \log_e x \right)^2} \right\}\]
\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{1 - 8 \log_e x + 12 \left( \log_e x \right)^2 + 3 + 8 \log_e x + 4 \left( \log_e x \right)^2}{1 - 4 \log_e x - 12 \left( \log_e x \right)^2 - 3 + 4 \log_e x + 4 \left( \log_e x \right)^2} \right\}\]
\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{4 + 16 \left( \log_e x \right)^2}{- 2 - 8 \left( \log_e x \right)^2} \right\}\]
\[ \Rightarrow y = \tan^{- 1} \left[ \frac{4\left\{ 1 + 4 \left( \log_e x \right)^2 \right\}}{- 2\left\{ 1 + 4 \left( \log_e x \right)^2 \right\}} \right]\]
\[ \Rightarrow y = \tan^{- 1} \left[ - 2 \right]\]
\[ \Rightarrow \frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = 0\]
APPEARS IN
संबंधित प्रश्न
If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`
Differentiate tan (x° + 45°) ?
Differentiate etan x ?
Differentiate \[3^{e^x}\] ?
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
Differentiate \[\tan^{- 1} \left( e^x \right)\] ?
Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?
Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?
Differentiate
\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate the following with respect to x:
\[\cos^{- 1} \left( \sin x \right)\]
Find \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x^2 + y^2 \right)^2 = xy\] ?
If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
Differentiate \[\left( \log x \right)^x\] ?
Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?
Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?
find \[\frac{dy}{dx}\] \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?
If \[e^x + e^y = e^{x + y}\] , prove that
\[\frac{dy}{dx} + e^{y - x} = 0\] ?
Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?
Find \[\frac{dy}{dx}\] , when \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?
If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?
If \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?
Differentiate log (1 + x2) with respect to tan−1 x ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?
If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ?
\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .
If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .
Find the second order derivatives of the following function tan−1 x ?
If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?
If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?
If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?
Differentiate the following with respect to x:
\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]