Advertisements
Advertisements
प्रश्न
Differentiate the following with respect to x:
\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]
उत्तर
\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right) = \frac{d}{dx}\left[ \tan^{- 1} \left( \frac{1 + x}{1 - x} \right) \right]\]
\[ = \frac{1}{1 + \left( \frac{1 + x}{1 - x} \right)^2} \times \frac{1 - x + 1 + x}{\left( 1 - x \right)^2}\]
\[ = \frac{\left( 1 - x \right)^2}{\left( 1 - x \right)^2 + \left( 1 + x \right)^2} \times \frac{2}{\left( 1 - x \right)^2}\]
\[ = \frac{\left( 1 - x \right)^2}{1 - 2x + x^2 + 1 + 2x + x^2}\]
\[ = \frac{\left( 1 - x \right)^2}{2\left( 1 + x^2 \right)} \times \frac{2}{\left( 1 - x \right)^2}\]
\[ = \frac{1}{1 + x^2}\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles ecos x.
Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?
Differentiate (log sin x)2 ?
Differentiate \[\tan^{- 1} \left( e^x \right)\] ?
Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?
Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?
Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?
Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Find \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?
If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?
Differentiate \[x^{\tan^{- 1} x }\] ?
If \[e^x + e^y = e^{x + y}\] , prove that
\[\frac{dy}{dx} + e^{y - x} = 0\] ?
If \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?
If \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that
If
Differentiate
Differentiate
If
If
If x = sin t, y = sin pt, prove that
Find
If y = cos−1 x, find
If x = t2 and y = t3, find
If x = 2at, y = at2, where a is a constant, then find
If y = |x − x2|, then find
If x = f(t) and y = g(t), then write the value of
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
If x = f(t) and y = g(t), then
If
If
If logy = tan–1 x, then show that