Advertisements
Advertisements
प्रश्न
Differentiate the following functions from first principles ecos x.
उत्तर
\[\text{Let } f \left( x \right) = e^{\cos x} \]
\[ \Rightarrow f\left( x + h \right) = e^{\cos\left( x + h \right)} \]
\[\therefore \frac{d}{dx}\left\{ f\left( x \right) \right\} = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{e^{\cos\left( x + h \right)} - e^{\cos x}}{h}\]
\[ = \lim_{h \to 0} e^{\cos x }\left[ \frac{e^{\cos\left( x + h \right) - \cos x} - 1}{h} \right]\]
\[ = \lim_{h \to 0} e^{\cos x} \left[ \frac{e^{\cos\left( x + h \right) - \cos x} - 1}{\cos\left( x + h \right) \cos x} \right] \times \frac{\cos\left( x + h \right) - \ cosx}{h}\]
\[ = e^{\cos x} \lim_{h \to 0} \left( \frac{cos\left( x + h \right) - \cos x}{h} \right) \times \lim_{h \to 0} \left[ \frac{e^{\cos\left( x + h \right) - \ cos x} - 1}{\cos\left( x + h \right) - \cos x} \right]\]
\[ = e^{\cos x} \lim_{h \to 0} \left( \frac{\cos\left( x + h \right) - \cos x}{h} \right) \left[ \because \lim_{h \to 0} \frac{e^x - 1}{x} = 1 \right]\]
\[ = e^{\cos x} \lim_{h \to 0} \left\{ \frac{- 2\sin\left( \frac{x + h + x}{2} \right)\sin\left( \frac{x + h - x}{2} \right)}{h} \right\} \left[ \because \cos A - \cos B = - 2\sin \left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right) \right]\]
\[ = e^{\cos x} \lim_{h \to 0} \frac{- \sin\left( \frac{2x + h}{2} \right)}{1} \times \frac{\sin\left( \frac{h}{2} \right)}{\frac{h}{2}}\]
\[ = e^{\cos x} \lim_{h \to 0} \frac{- \sin\left( \frac{2x + h}{2} \right)}{1} \times \lim_{h \to 0} \frac{\sin\left( \frac{h}{2} \right)}{\frac{h}{2}}\]
\[ = e^{\cos x} \lim_{h \to 0} - \sin\left( \frac{2x + h}{2} \right) \left[ \because \frac{\sin x}{x} = 1 \right]\]
\[ = e^{\cos x} \left( - \sin x \right)\]
\[ = - \sin x e^{\cos x} \]
\[\text{ Hence }, \frac{d}{dx}\left( e^{\cos x} \right) = - \sin x e^{\cos x }\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles \[e^\sqrt{2x}\].
Differentiate the following functions from first principles sin−1 (2x + 3) ?
Differentiate tan2 x ?
Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?
Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?
Differentiate \[\log \left( \tan^{- 1} x \right)\]?
Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?
Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?
Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?
Differentiate \[x^{\cos^{- 1} x}\] ?
Differentiate \[\left( \sin x \right)^{\log x}\] ?
Differentiate \[\sin \left( x^x \right)\] ?
Differentiate \[\left( \sin^{- 1} x \right)^x\] ?
Differentiate \[\left( x^x \right) \sqrt{x}\] ?
If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?
Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?
Find \[\frac{dy}{dx}\] , when \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?
If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?
If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?
Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with respect to \[\sec^{- 1} x\] ?
If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .
If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?
If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?
If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write \[\frac{d^2 y}{d x^2}\] in terms of y ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 f '' (x) − xf(x) =
If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?
If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]
Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.