Advertisements
Advertisements
प्रश्न
Differentiate \[\left( x^x \right) \sqrt{x}\] ?
उत्तर
\[\text{ Let y } = x^x \sqrt{x} . . . \left( i \right)\]
\[\text{ Taking log on both sides }, \]
\[\log y = \log\left( x^x \sqrt{x} \right)\]
\[ \Rightarrow \log y = \log x^x + \log x^\frac{1}{2} \]
\[ \Rightarrow \log y = x \log x + \frac{1}{2}\log x \]
Differentiating with respect to x,
\[\frac{1}{y}\frac{dy}{dx} = x\frac{d}{dx}\left( \log x \right) + \log x\frac{d}{dx}\left( x \right) + \frac{1}{2}\frac{d}{dx}\left( \log x \right) \]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = x\left( \frac{1}{x} \right) + \log x\left( 1 \right) + \frac{1}{2}\left( \frac{1}{x} \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = 1 + \log x + \frac{1}{2x}\]
\[ \Rightarrow \frac{dy}{dx} = y\left[ 1 + \log x + \frac{1}{2x} \right]\]
\[ \Rightarrow \frac{dy}{dx} = x^x \sqrt{x}\left[ 1 + \log x + \frac{1}{2x} \right] \left[ \text{ using equation} \left( i \right) \right]\]
\[ \Rightarrow \frac{dy}{dx} = x^{x + \frac{1}{2}} \left[ \left( \frac{2x + 1}{2x} \right) + \log x \right]\]
APPEARS IN
संबंधित प्रश्न
Differentiate \[\tan^{- 1} \left( e^x \right)\] ?
Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
Prove that \[\frac{d}{dx} \left\{ \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right\} = \sqrt{a^2 - x^2}\] ?
Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?
Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?
Differentiate the following with respect to x:
\[\cos^{- 1} \left( \sin x \right)\]
If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?
If \[\sec \left( \frac{x + y}{x - y} \right) = a\] Prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?
If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?
Differentiate \[{10}^{ \log \sin x }\] ?
Differentiate \[{10}^\left( {10}^x \right)\] ?
Differentiate \[\sin \left( x^x \right)\] ?
Differentiate \[\left( \tan x \right)^{1/x}\] ?
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
If \[xy \log \left( x + y \right) = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
If \[y = x \sin y\] , prove that \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?
If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?
If \[x = \frac{\sin^3 t}{\sqrt{\cos 2 t}}, y = \frac{\cos^3 t}{\sqrt{\cos t 2 t}}\] , find\[\frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with respect to \[\sec^{- 1} x\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?
If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
Given \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .
The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to \[\cos^{- 1} x\] is ___________ .
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
Find the minimum value of (ax + by), where xy = c2.